Browse > Article
http://dx.doi.org/10.12989/ose.2019.9.3.287

Multivariate design estimations under copulas constructions. Stage-1: Parametrical density constructions for defining flood marginals for the Kelantan River basin, Malaysia  

Latif, Shahid (Department of Geography, University of Malaya)
Mustafa, Firuza (Department of Geography, University of Malaya)
Publication Information
Ocean Systems Engineering / v.9, no.3, 2019 , pp. 287-328 More about this Journal
Abstract
Comprehensive understanding of the flood risk assessments via frequency analysis often demands multivariate designs under the different notations of return periods. Flood is a tri-variate random consequence, which often pointing the unreliability of univariate return period and demands for the joint dependency construction by accounting its multiple intercorrelated flood vectors i.e., flood peak, volume & durations. Selecting the most parsimonious probability functions for demonstrating univariate flood marginals distributions is often a mandatory pre-processing desire before the establishment of joint dependency. Especially under copulas methodology, which often allows the practitioner to model univariate marginals separately from their joint constructions. Parametric density approximations often hypothesized that the random samples must follow some specific or predefine probability density functions, which usually defines different estimates especially in the tail of distributions. Concentrations of the upper tail often seem interesting during flood modelling also, no evidence exhibited in favours of any fixed distributions, which often characterized through the trial and error procedure based on goodness-of-fit measures. On another side, model performance evaluations and selections of best-fitted distributions often demand precise investigations via comparing the relative sample reproducing capabilities otherwise, inconsistencies might reveal uncertainty. Also, the strength & weakness of different fitness statistics usually vary and having different extent during demonstrating gaps and dispensary among fitted distributions. In this literature, selections efforts of marginal distributions of flood variables are incorporated by employing an interactive set of parametric functions for event-based (or Block annual maxima) samples over the 50-years continuously-distributed streamflow characteristics for the Kelantan River basin at Gulliemard Bridge, Malaysia. Model fitness criteria are examined based on the degree of agreements between cumulative empirical and theoretical probabilities. Both the analytical as well as graphically visual inspections are undertaken to strengthen much decisive evidence in favour of best-fitted probability density.
Keywords
flood; block (annual) maxima; parametric functions; marginal distribution; goodness-of-fit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Claeskens, G. and Hjort, N.L. (2008), Model Selection and Model Averaging, Cambridge University Press, 2008.
2 Shiau J.T. (2003), "Return period of bivariate distributed extreme hydrological events", Stoch. Environ. Res. Risk Assess. 17, 42-57.   DOI
3 Shao. Q., Chen. Y.D. and Zhang, L. (2008), "An extension of three-parameter Burr III distribution for low-flow frequency analysis", Comput. Stat. Data Anal., 52, 1304-1314.   DOI
4 Seier, E. (2002), "Comparison of tests for univariate normality", lnter. Stat. Statistical J., 1, 1-17.
5 Singh, R.S. (1977), "Applications of estimators of a density and its derivatives", J. R. Stat. Soc. Series B Stat. Methodol., 39(3), 357-363.
6 Sraj, M., Bezak, N. and Brilly, M. (2014), "Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River", Hydrol. Process., Doi:10.1002/hyp.10145.   DOI
7 Singh, J., Knapp, H.V. and Demissie, M. (2004), "Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey. Available at: www.sws.uiuc.edu/pubdoc/CR/ ISWSCR2004-08.pdf. Accessed 8 September 2005.
8 Singh, V.P., Guo, H. and Yu, F.X. (1993), "Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome", Stoch. Hydrol. Hydraul., 7(3), 163-177.   DOI
9 Scott, D.W. (1992), Multivariate Density Estimations, Theory, Practice and Visualization, New York: Wiley.
10 Salvadori, G. and De Michele, C. (2004), "Frequency analysis via copulas: theoretical aspects and applications to hydrological events", Water Resour. Res., 40, W12511, doi: 10.1029/2004WR003133.a
11 Shoukri, M.M., Mian I. and Tracy, D.S. (1988), "Sampling properties of estimators of the log-logistic distribution with application to Canadian precipitation data", Can. J. Stat., 16, 223-236.   DOI
12 Schwarz, G.E. (1978), "Estimating the dimension of a model", Ann. Stat., 6(2), 461e464.   DOI
13 Tosunoglu, F. and Kisi, O. (2016), "Joint modelling of annual maximum drought severity and corresponding duration", J. Hydrol., (In Press). http://dx.doi.org/10.1016/j.jhydrol.2016.10.018.   DOI
14 Toreti, A., Kuglitsch, F.G., Xoplaki, E., Della-Marta, P.M., Aguilar, E., Prohom, M. and Luterbacher, J. (2011), "A note on the use of the standard normal homogeneity test to detect inhomogeneities in climatic time series", Int. J. Climatol., 31, 630-632, DOI: 10.1002/joc.2088.   DOI
15 Vogel, R.M., Thomas, W.O. and McMahon, T.A. (1993), "Flood-flow frequency model selection in the southwestern United States", Water Resour. Plan. Manage.- ASCE, 119(3), 353-366.   DOI
16 Johnson, N.L. (1994), Continuous univariate distribution, Wiley New York, Vol 1.
17 Daneshkhan, A., Remesan R., Omid C. and Holman, I.P. (2016), "Probabilistic modelling of flood characteristics with parametric and minimum information pair-copula model", J. Hydrol., 540, 469-487.   DOI
18 De Michele, C., Salvadori, G., Canossi, M., Petaccia A. and Rosso, R. (2005), "Bivariate statistical approach to check the adequacy of dam spillway", J. Hydrol. Eng., 10(1), 50-57.   DOI
19 Zhang, R., Li, Q., Chow, T.T., Li, S. and Danielescu, S. (2013), "Baseflow separation in a small watershed in New Brunswick, Canada, using a recursive digital filter calibrated with the conductivity mass balance method", Hydrol. Process., 27, 2659-2665, DOI:10.1001/hyp.9417.   DOI
20 Jaiswal, R.K., Lohani, A.K. and Tiwari, H.L. (2015), "Statistical analysis for change detection and trend assessment in climatological parameters", Environ. Process, 2, 729-749. DOI 10.1007/s40710-015-0105-3   DOI
21 Kullback, S. and Leibler, R.A. (1951), "On information and sufficiency", Anna. Math. Stat., 22, 79-86.   DOI
22 Kendall, M. G. (1975), Rank Correlation Methods, 4th ed., Charles Griffin: London, 1975.
23 Kite, G.W. and Stuart, A. (1977), Frequency and risk analysis in hydrology, Water Resources pulic. Fort Collins, Co.
24 Katz, R.W., Parlang, M.B. and Naveau, P. (2002), "Statistics of extremes in hydrology", Adv. Water Resour., 25, 1287-1304.   DOI
25 Choulakian, V., Jabi, EI. N. and Issa, M. (1990), "On the distribution of flood volume in partial duration series analyses of flood phenomenon", Stoch. Hydrol. Hydraul., 4(3), 217-226.   DOI
26 Calver, A. and Lamb, R. (1995), "Flood frequency estimation using continuous rainfall-runoff modelling", Phys. Chem. Earth., 20, 479-483.   DOI
27 Cunnane, C. (1988), "Methods and merits of regional flood frequency analysis", J. Hydrol., 100, 269-290.   DOI
28 Cunnane, C. (1989), "Statistical distributions for flood frequency analysis", Operational Hydrology Report no. 33, WMO no. 718, World Meteorological Organization, Geneva, Switzerland.
29 Chai, T. and Draxler R.R. (2014), "Root mean square error (RMSE) or mean absolute error (MAE)?- Arguments against avoiding RMSE in the literature", Geoscience Model Development, 7, 1247-1250.   DOI
30 Cunnane, C. (1978), "Unbiased plotting positions- A review", J. Hydrol., 37(3), 205-222.   DOI
31 Cong, R.G. and Brady, M. (2012), "The interdependence between Rainfall and Temperature: copula Analyses", The Scientific World Journal, Vol 2011, Article ID 405675.
32 Coles, S. (2001), An introduction statistical modelling of extreme values, Springer, ISBN 1-85233-459-2.
33 Chen, L., Singh, V.P. and Xiong, F. (2017), "An entropy-based generalized gamma distribution for flood frequency analysis", Entropy, 19, 239.   DOI
34 Chambers, J.M, Cleveland, W.S., Kleiner, B. and Tukey, P.A. (1983), Graphical Methods for Data Analysis, Wadsworth & Brooks/Cole, Belmont, CA.
35 Cohn, T.A., Lane, W.L. and Baier W.G. (1997), "An algorithm for computing moments-based flood quantile estimates when historical flood information is available", Water Resour. Res., 33(9), 2089-2096.   DOI
36 Choulakian, V., Jabi, EI. N, and Issa, M. (1990), "On the distribution of flood volume in partial duration series analyses of flood phenomenon", Stoch. Hydrol. Hydraul., 4(3), 217-22.   DOI
37 D'Adderio, L.P., Cugerone, K., Porcu, F., De Michele, C. and Tokay, A. (2016), "Capabilities of the Johnson SB distribution in estimating rain variables", Adv. Water Resour., 97, 241-250, https://doi.org/10.1016/j.advwatres.2016.09.017   DOI
38 DID (Drainage and Irrigation Department Malaysia). (2003), "Annual flood report of DID for Peninsular Malaysia. Unpublished report", DID, Kuala Lumpur.
39 DID (Drainage and Irrigation Department Malaysia). (2004), "Annual flood report of DID for Peninsular Malaysia", Unpublished report, DID, Kuala Lumpur.
40 DID (Drainage and Irrigation Department). (2000), "Annual flood report of DID for Peninsular Malaysia", Unpublished report. DID, Kuala Lumpur.
41 Dupuis, D.J. (2007), "Using copulas in hydrology: benefits, cautions, and issues", J. Hydrol. Eng., 12(4), 381-393.   DOI
42 Dufour J.M., Farhat, A., Gardiol, L. and Khalaf, L. (1998), "Simulation-based Finite Sample Normality Tests in Linear Regressions", Econometrics J., 1, 154-173.   DOI
43 Efromovich, S. (1999), Nonparametric curve estimation: methods, theory and applications. New York: Springer-Verlag.
44 Eckhardt, K. (2005), "How to construct recursive digital filters for baseflow separation", Hydrol. Process., 19, 507-515.   DOI
45 Xu, G.Y., Yan, G.X.Q. and Sun, X.G. (2005), "Interdecadal and interannual variation characteristics of rainfall in north china and its relation with the northern hemisphere atmospheric circulations", Chinese J. Geophys., (in Chinese), 48 (2), 511-518.
46 Xu, C., Yin, J., Guo, S. and Hong, X. (2016), "Deriving design flood hydrograph based on conditional distribution: A case study of danjiangkou reservoir in Hanjiang Basin", Math. Probl. Eng., 11, 1-16.
47 Grimaldi, S. and Serinaldi, F. (2006), "Asymmetric copula in multivariate flood frequency analysis", Adv. ater Resour., 29, 1155-1167.   DOI
48 Goel, N.K., Seth, S.M. and Chandra, S. (1998), "Multivariate modelling of flood flows", J. Hydraul. Eng., 124(2), 146-155.   DOI
49 Grimaldi, S., Baets B.D. and Verhost, N.E.C. (2013), "Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation", Hydrol.Earth Syst. Sci., 1.
50 Graler, B., Berg, M.J.V., Vandenberg, S., Petroselli, A., Grimaldi, S., Baets B.D. and Verhost, N.E.C. (2013), "Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation", Hydrol.Earth Syst. Sci., 17, 1281-1296.   DOI
51 Gaal, L., Szolgay, J., Kohnova, S., Hlavcova, K., Parajka, J., Viglione, A. and Bloschl, G. (2015). "Dependence between flood peaks and volumes: a case study on climate and hydrological controls", Hydrol. Sci. J., 60(6), 968-984   DOI
52 Genest, C., Favre A.C., Beliveau, J. and Jacques C. (2007), "Meta-elliptical copulas and their use in frequency analysis of multivariate ydrological data", Water Resour. Res., 43, W09401, doi: 10.1029/2006WR005275.   DOI
53 Gupta, H.V., Sorooshian, S. and Yapo, P.O. (1999), "Status of automatic calibration for hydrologic models: Comparison with multilevel expert caliberation", J. Hydrol. Eng., 4(2), 135-143.   DOI
54 Madadgar, S. and Moradkhani, H. (2013), "Drought analysis under climate change using copula", J. Hydrol. Eng.- ASCE, 18, 746-759.   DOI
55 Karim, M.A. and Chowdhury, J.U. (1995), "A comparison of four distributions used in flood frequency analysis in Bangladesh", Hydrol. Sci. J., 40(1), 55-66.   DOI
56 Kuchment, L.S. and Gelfan, A.N. (2011), "Assessment of extreme flood characteristics based on a dynamic-stochastic model of runoff generation and the probable maximum discharge", Risk in Water Resources Management (Proceedings of Symposium H03 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 347, 2011).
57 Kang, H.O. and Yusof, F. (2012), "Homogeneity tests on daily rainfall series", Int. J. Contemp. Math. Sci., 7, (1), 9-22
58 Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. (2007), "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations", Transactions of the ASABE, 50(3), 885- 900.   DOI
59 MMD. (2007), "Malaysian Meteorological Department (MMD). Report on Heavy Rainfall that Caused Floods in Kelantan and Terengganu", Unpublished report. MMD: Kuala Lumpur.
60 Markiewicz, I., Strupczewski, W.G., Bogdanowicz, E. and Kochanek, K. (2015), "Generalized exponential distribution in flood frequency analysis for Polish rivers", PLOS ONE, DOI:10.1371/journal.pone.0143965   DOI
61 Morrison, J.E. and Smith, J.A. (2002), "Stochastic modeling of flood peaks using the generalized extreme value (GEV) distributions", Water Resour. Res., 38 (12), 1302, DOI: 10.1029/2001WR000502.   DOI
62 Mann, H.B. (1945), "Nonparametric test against trend", Econometrics, 13, 245-259.   DOI
63 McMahon, T.A. and Srikanthan, R. (1981), "Log-Pearson type 3 distribution - is it applicable to flood frequency analysis of Australian streams?", J. Hydrol., 52, 139-147.   DOI
64 Mirabbasi, R., Kakheri-Fard, A. and Dinpashoh, Y. (2012), "Bivariate drought frequency analysis using the copula method", Theor . Appl. Climatol., 108, 191-206.   DOI
65 Nelsen, R.B. (2006), An introduction to copulas, Springer, New York.
66 Chow, V.T., Maidment D.R. and Mays, L.W. (1988), Applied Hydrology. McGraw Hill, New York.
67 Conover, W.J. (1999), Practical Nonparametric Statistics, John Wiley e Sons, New York.
68 Cugerone, K. and De Michele C. (2005), "Johnson SB as general functional form for raindrop size distribution", Water Resour. Res., 51(8), 6276-6289. http://dx.doi.org/10.1002/2014WR016484.   DOI
69 Chan, N.W. (1995), "Flood disaster management in Malaysia: an evaluation of the effectiveness of government resettlement scheme", J. Disaster Prevent. Management, 4, 22-29.   DOI
70 Shao, Q. (2004), "Notes on maximum likehood estimations for the three parameter Burr III distribution", Comput. Stat. Data Anal., 45, 675-687.   DOI
71 Sen, Z. (1999), "Simple risk calculations in dependent hydrological series", Hydrol. Sci. J., 44(6), 871- 878.   DOI
72 Schwartz, S.C. (1967), "Estimations of probability density by an orthogonal series", Ann. Math. Stat., 38, 1261-1265.   DOI
73 Serinaldi, F. (2015), "Dismissing return periods!", Stoch. Environ. Res. Risk Assess, 29(4), 1179-1189.   DOI
74 Serinaldi, F. and Grimaldi, S. (2007), "Fully nested 3-copula procedure and application on hydrological data", J. Hydrol. Eng., 12(4), 420-430.   DOI
75 Selaman, O.S., Said, S. and Putuhena, F.J. (2007), "Flood frequency analysis for Sarawak using Weibull, Gringorten and L-Moments formula", J. Institution of Engineers, 68, 1, 43-52.
76 Shao, Q.X., Wong, H., Xia, J. and Ip, W.C. (2004), "Models for extreme using the extended three-parameter Burr XII system with application to flood frequency analysis", Hydrol. Sci. J., 49, 685-702.   DOI
77 Duong, T. and Hazelton, M.L. (2003), "Plug-in bandwidth selectors for bivariate kernel density estimations", J. Nonparametr. Stat, 15, 17-30.   DOI
78 Correia, F.N. (1987), "Multivariate partial duration series in flood risk analysis", (Ed., Singh, V.P.), Hydrologic Frequency Modelling. Reidel, Dordrecht, The Netherlands, 541-554
79 Durrans, S.R., Eiffe, M.A., Thomas, Jr. W.O. and Goranflo, H.M. (2003), "Joint seasonal/ annual flood frequency analysis", J. Hydrol. Eng., 8, 181-189.   DOI
80 Duins, R.P.W. (1976), "On the choice of smoothing parameters of Parzen estimators pf probability density functions", IEEE T. Comput., 25, 1175-1179.
81 Dooge, J.C.E. (1986)," Looking for hydrologic laws", Water Resour. Res, 22(9), 465-485.
82 De Michele, C. and Salvadori, G. (2003), "A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas", J. Geophys. Res., 108(2), 4067. Doi: 10.1029/2002JD002534.   DOI
83 Veronika, B.M. and Halmova, D. (2014), "Joint modelling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava", J. Hydrol. Hydromech., 62(3), 186-196.   DOI
84 Wang, F.K., Keats, J.B. and Zimmir, W.J. (1996), "Maximum likelihood estimation of the burr XII parameters with censored and uncensored data", Microelectron. Reliab., 36, 359-362.   DOI
85 Wilems, P. (2005), "Bias analysis on the tail properties of flood frequency distributions", Proceedings of the EGU05 Conference (General Assembly of the European Geoscience Union), Vienna, 24-29 April 2005; Geophysical Research Abstract, vol 7, 10299.
86 Yue, S. (2000), "The bivariate lognormal distribution to model a multivariate flood episode", Hydrol. Process., 14, 2575-2588.   DOI
87 Yue, S., Pilon, P. and Cavadias, G. (2002), "Power of the Mann-Kendall and Spearman's rho test for detecting monotonic trends in hydrological series", J. Hydrol., 259, 254-271.   DOI
88 Yue, S. (1999), "Applying the bivariate normal distribution to flood frequency analysis", Water Int., 24(3), 248-252.   DOI
89 Yue, S. (2001), "A bivariate gamma distribution for use in multivariate flood frequency analysis", Hydrol. Process., 15, 1033-1045.   DOI
90 Yue, S., Ouarda, T.M.B.J., Bobee, B., Legendre, P and Bruneau, P. (1999), "The Gumbel mixed model for flood frequency analysis", J. Hydrol., 226(1-2), 88-100.   DOI
91 Yue, S. and Rasmussen, P. (2002), "Bivariate frequency analysis: discussion of some useful concepts in hydrological application", Hydrol. Processes, 16, 2881-2898.   DOI
92 Zhang, L (2005), "Multivariate hydrological frequency analysis and risk mapping", Doctoral dissertation, Beijing Normal University.
93 Zhang, L. and Singh, V.P. (2006), "Bivariate flood frequency analysis using copula method", J. Hydrol. Eng., 11(2), 150.   DOI
94 Zhang, L. and Singh, V.P. (2007), "Trivariate flood frequency analysis using the Gumbel-Hougaard copula", J. Hydrol. Eng., 12(4), 431- 439.   DOI
95 Krstanovic, P.F. and Singh, V.P. (1987), "A multivariate stochastic flood analysis using entropy", (Ed., Singh, V.P.). Hydrologic Frequency Modelling, Reidel, Dordrecht, 515-539.
96 Gringorten, I.I. (1963), "A plotting rule of extreme probability paper", J. Geophys. Res., 68(3), 813-814   DOI
97 Guo, S.L. (1990), "Unbiased plotting position formulae for historical floods", J. Hydrol., 121(1-4), 45-61.   DOI
98 Genest, C. and Rivest, L.P. (1993), "Statistical inference procedures for bivariate Archimedean copulas", J. Am. Stat. Assoc., 88(423), 1034-1043.   DOI
99 Khaliq, M., Ouarda, T., Ondo, J.C., Gachon, P. and Bobee, B. (2006), "Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review", J. Hydrol., 329(3-4), 534-552   DOI
100 Kao, S. and Govindaraju, R. (2008), "Trivariate statistical analysis of extreme rainfall events via the Plackett family copulas", Water Resour. Res., 44, 10.1029/2007WR006261.   DOI
101 Kim, T.W., Valdes J.B. and Yoo C. (2003), "Nonparametric approach for estimating return periods of droughts in arid regions", J. Hydrol. Eng. - ASCE, 8(5), 237-246.   DOI
102 Kahya, E. and Kalayci, S. (2004), "Trend analysis of streamflow in Turkey", J. Hydrol., 289, 128-144, DOI: 10.1016/j.jhydrol.2003.11.006.   DOI
103 Kim, T.W., Valdes, J.B. and Yoo, C. (2006), "Nonparametric approach for bivariate drought characterisation using Palmer drought index", J. Hydrol. Eng., 11(2), 134-143.   DOI
104 Wan, I. (1996), "Urban growth determinants for the state of Kelantano of the state's policy makers", Penerbitan Akademik Fakulti Kejuruteraan dan Sains Geoinformasi. Buletin Ukur, 7, 176-189.
105 Nashwan, M.S., Ismail, T. and Ahmed, K. (2018). "Flood susceptibility assessment in Kelantan river basin using copula", Int. J. Eng. Technol., 7(2), 584-590.   DOI
106 Nathan, R.J. and McMahon, T.A. (1990), "Evaluation of automated techniques for base flow and recession analysis", Water Resour. Res., 26, 1465-1473.   DOI
107 Willems, P. (1998), Hydrological applications of extreme value analysis, in hydrology in in a changing environment, (Eds., H, Wheater and C. Kirby), John Wiley & Sons, Chichester, vol.III, 15-25.
108 Wallis, J.R. (1988), "Catastrophes, computing and containment: living in our restless habitat", Speculations in Science and Technology, 11(4), 295-315.
109 Wooldridge, S., Kalma, J. and Kuczera, G. (2001), "Parameterisation of a simple semi-distributed model for assessing the impact of land-use on hydrologic response", J. Hydrol., 254, 16-32.   DOI
110 Willmott, C. and Matsuura, K. (2005), "Advantage of the Mean Absolute Error (MAE) OVER THE Root Mean Square Error (RMSE) in assessing average model performance", Clim. Res., 30, 79-82.   DOI
111 Xu, Y., Huang, G. and Fan, Y. (2015), "Multivariate flood risk analysis for Wei River", Stoch. Environ. Res. Risk Assess., DOI 10.1007/s00477-015-1196-0.   DOI
112 Hannan, E.J. and Quinn, B.G. (1979), "The determination of the order of an autoregression", J. R. Stat. Soc. Series B Stat. Methodol., 41, 190-195.
113 Ekanayake, S.T. and Cruise, J.F. (1993). "Comparison of Weibull- and exponential-based partial duration stochastic flood models", Stoch. Hydrol. Hydraul., 7, 283-297.   DOI
114 Eckhardt, K. (2004), "How to construct recursive digital filters for baseflow separation", Hydrol. Process, 19(2), https://doi.org/10.1002/hyp.5675   DOI
115 Gonzales, A.L., Nonner J., Heijkers, J. and Uhlenbrook S. (2009), "Comparison of different base flow separation methods in a lowland catchment", Hydrol. Earth Syst. Sci., 13, 2055-2068   DOI
116 Haggag, M.M.M. (2014), "New Criteria of Model selection and model averaging in linear regression models", Am. J. Theor. Appl. Stat., 3(5), 148-166.   DOI
117 Haddad, K. and Rahman, A. (2008), "Investigation on at-site flood frequency analysis in south-east Australia", Journal - The Institution of Engineers, Malaysia , 69(3).
118 Hosking, J.R.M. and Walis, J.R. (1987), "Parameter and quantile estimations for the generalized Pareto distributions", Technometrics, 29(3), 339-349.   DOI
119 Hosking, J.R.M., Wallis, J.R. and Wood, E.F. (1985), "Estimation of the general extreme value distribution be the method of probability weighted moments", Technometrics, 27(3), 251-261.   DOI
120 Hameed, K.H. (2008), "Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis", J. Hydrol., 349(3-4), 350-363.   DOI
121 Fan, Y.R., Huang, W.W., Huang, G.H., Huang, K., Li, Y.P. and Kong, X.M. (2015), "Bivariate Hydrological risk analysis based on coupled entropy- copula method for the Xiang xi River in the Three Gorges Reservoir area", Theor. Appl. Climatol., China, Doi: 10.1007/s00704-015-1505-z.   DOI
122 Ghosh, S. and Mujumdar, P.P. (2007), "Nonparametric methods for modeling GCM and scenario uncertainty in drought assessments", Water Resour. Res, 43, W07405. Doi: 10.1029/2006WR005351.   DOI
123 Kong, X.M., Huang, G.H., Fan, Y.R. and Li, Y.P. (2015), "Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi river, China", Stoch. Environ. Res. Risk A, 29, 833-846.   DOI
124 Fan, L. and Zheng, Q. (2016), "Probabilistic modelling of flood events using the entropy copula", Adv. Water Resour., 97, 233-240.   DOI
125 Favre, A.C., Adlouni, S.E., Perreault, L., Thiemonge, N. and Bobee, B. (2004), "Multivariate hydrological frequency analysis using copulas", Water Resour. Res., 40. Doi: 10.1029/2003WR002456.   DOI
126 Farrel, P.J. and Stewart, K.R. (2006), "Comprehensive study of tests for normality and symmetry: Extending the Spiegelhalter test", J. Stat. Comput. Simul., 76, 803-816. https://doi.org/10.1080/10629360500109023   DOI
127 Griffis, V.W. and Stedinger, J.R. (2007), "Log-Pearson type 3 distribution and its application in flood frequency analysis. I: Distribution characteristics", J. Hydrol. Eng., 12(5), 482-491. doi: .10.1061/(ASCE)1084-0699(2007)12:5(482)   DOI
128 Gupta, H.V., Kling, H., Yilmaz, K.K. and Martinez, G.F. (2009), "Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling", J. Hydrol., 377(2), 80e91.   DOI
129 Gupta, H.V., Sorooshian, S. and Yapo, P.O. (1999), "Status of automatic calibration for hydrologic models: Comparison with multilevel expert caliberation", J. Hydrol.Eng., 4(2), 135-143.   DOI
130 Zhang, R., Chen, Xi., Cheng, Q., Zhang, Z. and Shi, P. (2016), "Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China", Stoch. Environ. Res. Risk Assess., 30, 1641-165   DOI
131 Haktanir, T. (1992), "Comparison of various flood frequency distributions using annual flood peaks data of rivers in Anatolia", J. Hydrol., 136, 1-31.   DOI
132 Hosking, J.M.R. and Wallis, J.R. (1997), Regional Frequency Analysis, Cambridge University Press. Cambridge, UK.
133 Hamid, A.T, Sharif, M. and Archer, D. (2014), "Analysis of Temperature Trends in Satluj River Basin, India", J. Earth Sci. Clim. Change, 5, 222. Doi: 10.4172/2157-7617.1000222   DOI
134 Hall, M.J. (1984), Urban Hydrology. Barking, UK: Elsevier, 299.
135 Lim, Y.H. and Lye, L.M. (2003), "Regional flood estimation for ungauged basins in Sarawak, Malaysia", Hydrological Sciences-Journal-des Sciences Hydrologiques, 48(1).
136 Keshtkaran, P., Sabzevari, T. and Torabihaghighi, A. (2011), "Regional Flood Frequency Analysis of Fars Rivers in Iran Using New Statistical Distributions (Case Study for Ghareaghaj and Kor Rivers)", Geophys. Res. Abstracts, 13,161, 2011.
137 Karmakar, S. and Simonovic, S.P. (2008), "Bivariate flood frequency analysis. Part-1: Determination of marginal by parametric and non-parametric techniques", J. Flood Risk Manage., 1, 190-200.   DOI
138 Karmakar, S. and Simonovic, S.P. (2009), "Bivariate flood frequency analysis. Part-2: A copula-based approach with mixed marginal distributions", J. Flood Risk Manage., 2(1), 1-13.   DOI
139 Ladson, A.R., Brown, R., Neal, B. and Nathan, R. (2013), "A standard approach to baseflow separation using the Lyne and Hollick filter", Aust. J. Water Resour., 17(1), 25-34.
140 Lim, K.J., Engel, B.A., Tang, Z., Choi, J., Kim, K., Muthukrishnan S. and Tripathy, D. (2005), "Automated web GIS based hydrograph analysis tool, WHAT", J. Am. Water Resour. Assoc., 1407-1416.   DOI
141 Lawrence, D., Paquet, E., Gailhard, J. and Fleig, A.K. (2014), "Stochastic semi-continuous simulations for extreme flood estimations in catchments with combined rainfall-snowmelt flood regimes", Nat. Hazard Earth Sys., 14, 1283-1298.   DOI
142 Jamaliah, J. (2007), "Emerging Trends of Urbanization in Malaysia [online]", Acessed from: http://www.statistics.gov.my/eng/images/stories/files/journalDOSM/V104ArticleJamaliah.pdf. [Acessed 20 January 2009].
143 Heo, J., Salas J.D. and Boes D.C. (2001), "Regional Food frequency analysis based on a Weibull model: Part 2. Simulations and applications", J. Hydrol., 242, 171-182.   DOI
144 Haktanir, T. and Horlacher, H.B. (1993), "Evaluation of various distributions for flood frequency analysis", Hydrol. Sci., 38,1-2, 15-32.   DOI
145 Jain, D. and Singh, V. P. (1987), "Comparison of some flood frequency distributions using empirical data", Proceedings of the International Symp. on Flood Frequency and Risk Analyses, Hydrologie Frequency Modelling, D. Reidel Publ. Co., Dordrecht, The Netherlands.
146 Jones, M.C., Marron, J.S and Sheather, S.J. (1996), "A brief survey of bandwidth selection for density estimation", J. Am. Stat. Assoc., 91, 401-407.   DOI
147 Ljung, G.M. and Box, G.E.P. (1978), "On a measure of lack of fit in time series models", Biometrika, 65, 297-303.   DOI
148 Liu, Q. and Cui, B. (2008), "Spatial and temporal variability of annual precipitation during 1961-2006 in Yellow River Basin, China", J. Hydrol, 361(3-4), 330-338.   DOI
149 Lall, U. (1995), "Recent advances in nonparametric function estimation: Hydrological applications", Rev. Geophys., 33(1), 1093-1102.   DOI
150 Lall, U., Moon, Y.I. and Khalil. A.F. (1993), "Kernel flood frequency estimators: Bandwidth selection and kernel choice", Water Resour. Res., 29(4), 1003-1015.   DOI
151 Lyne, V. and Hollick, M. (1979), "Stochastic time variable rainfall-runoff modelling", Proceedings of the Hydrology and Water Resources Symposium, Perth, 10-12 September, Institution of Engineers National Conference Publication, No. 79/10, 89-92
152 Lall, U., Rajagopalan, B and Tarboton, D.G. (1996), "A nonparametric wet/dry spell model for resampling daily precipitation", Water Resour. Res., 32(9), 2803-2823.   DOI
153 Legates, D.R. and McCabe, G.J. (1999), "Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation", Water Resour. Res., 35(1), 233-241.   DOI
154 Madsen, H., Rasmussen, P.F. and Rosbjerg, D. (1997), "Comparison of annual maximum series and partial duration series methods for modelling extreme hydrologic events. 1. At-site modelling", Water Resour. Res., 33(4), 747-757.   DOI
155 Modarres, R. and Silva, V.P.R. (2007), "Rainfall trends in arid and semi-arid regions of Iran", J. Arid Environ., 70, 344-355.   DOI
156 Mathwave Technologies: http://www.mathwave.com/help/easyfit/html/analyses/graphs/difference.html.
157 Martins, E.S. and Stedinger, J.R. (2000), "Generalized maximum likehood GEV quantiles estimators for hydrologic data", Water Resour. Res., 36, 747-744.
158 Nash, J. and Sutcliffe, J. (1970), "River flow forecasting through conceptual models part i e a discussion of principles", J. Hydrol., 10(3), 282e290.   DOI
159 Adamowski, K. (1985), "Nonparametric kernel estimation of flood frequencies", Water Resour. Res., 21(11), 1885-1890.   DOI
160 Nadarajah, S. and Shiau, J. (2005), "Analysis of extreme flood events for the Pachang River, Taiwan", Water Resour. Manag., 19, 363-375.   DOI
161 Owen, C.E.B. (2008), "Parameter Estimation for the Beta Distribution", All Thesis and Disertation. 1614. https://scholarsarchive.byu.edu/etd/1614.
162 Pettitt ,A.N. (1979), "A non-parametric approach to the change-point problem", Appl. Statist., 28, 126-135   DOI
163 O'Connor, P.D.T. and Kleyner, A. (2012), Practical Reliability Engineering, Fifth Edition, John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
164 Papaioannou, G., Kohnova, S., Bacigal, T., Szolgay, J., Hlavcova, K. and Loukas, A. (2016), "Joint modelling of flood peaks and volumes: A copula application for the Danube River", J. Hydrol. Hydromech., 64(4), 382-392.   DOI
165 Poulin, A., Huard, D., Favre, A.C. and Pugin, S. (2007), "Importance of tail dependence in bivariate frequency analysis", J. Hydrol. Eng., 12(4), 394-403.   DOI
166 Rao, D.V. (1980), "Log Pearson Type 3 Distribution: A Generalized Evaluation", J. Hydraulic Div. - ASCE, 106(5), 853-872.   DOI
167 Razawi, S. and Vogel, R. (2018), "Pre-whitening of hydroclimatic time series? Implications for inferred change and variability across time scales", J. Hydrol., 557(2018), 109-115.   DOI
168 Reddy, M.J. and Ganguli, P. (2012b), "Probabilistic assessments of flood risks using trivariate copulas", Theor. Appl. Climatol., 111, 341-360.   DOI
169 Abdulkareem, J.H. and Sulaiman, W.N.A. (2015). "Trend Analysis of Precipitation Data in Flood Source Areas of Kelantan River Basin, Malaysia", Proceedings of the 3rd International Conference in Water Resources, ICWR-2015.
170 Alam, A., Bhat, M.S., Hakeem, F., Ahmad, B., Ahmad, S. and Sheikh, A.H. (2018), "Flood risk assessment of Srinagar city in Jammu and Kashmir, India". Int. J. Disaster Resilience Built Environ., 2, 9. https://doi.org/10.1108/IJDRBE-02-2017-0012.   DOI
171 Alamgir, M., Ismail, T. and Noor, M. (2018). "Bivariate frequency analysis of flood variables using copula in Kelantan River Basin", Malaysian J. Civil Eng., 30(3), 395-404.
172 Arshad, M., Rasool, M.T. and Ahmad, M.I. (2003), "Anderson Darling and modified Anderson Darling Tests for generalized Pareto distribution", Pakistan J. Appl. Sci., 3(2), 85-88.
173 Anderson, T.W. and Darling, D.A. (1954), "A test of goodness of fit", J. Am. Stat. Assoc., 49(268), 765-769.   DOI
174 Adamowski, K. (1989), "A monte Carlo comparison of parametric and nonparametric estimations of flood frequencies", J. Hydrol., 108, 295-308.   DOI
175 Arnold, J.G. and Allen, P.M. (1999), "Automated methods for estimating baseflow and ground water recharge from streamflow records", J. Am. Water Resour. Assoc., 35, 411-424.   DOI
176 Alexandersson, H. (1986), "A homogeneity test applied to precipitation test", J. Climatol., 6, 661-675.   DOI
177 Adamowski, K. (1996), "Nonparametric estimations of low-flow frequencies", J Hydraul Eng., 122(1), 46-49.   DOI
178 Arora, K. and Singh, V.P. (1988), "On the method of maximum likelihood estimation for the log-pearson type 3 distribution", Stoch. Hydrol. Hydraul., 2(2), 155-160.   DOI
179 Requena, A., Flores, I., Mediero, L. and Garrote, L. (2016), "Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model", Stoch. Environ. Res. Risk Assess., 30, 1363-1378. doi: https://doi.org/10.1007/s00477-015-1138-x.   DOI
180 Rao, A.R. and Hameed, K.H. (2000), Flood frequency analysis, CRC Press, Boca Raton, Fla.
181 Scholz, F.W. and Stephens, M.A. (1987), "K-sample Anderson-Darling tests", J. Am Stat. Assoc., 82(399): 918-924.   DOI
182 Rauf, U.F.A. and Zeephongsekul, P. (2014), "Copula based analysis of rainfall severity and duration: a case study", Theor. Appl. Climatol., 115(1-2), 153-166.   DOI
183 Rossi, F., Fiorentino, M. and Versaece, P. (1984), "Two component extreme value distribution for flood frequency analysis", Water Resour. Res., 20(7), 847-856.   DOI
184 Reddy, M.J. and Ganguli, P. (2012a), "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas", Water Resour. Manage., DOI. 10.1007/s11269-012- 0124-z.   DOI
185 Singh, V.P. and Singh, K. (1988), "Parameter Estimation for Log-Pearson Type III Distribution by POME", J. Hydraul. Eng.- ASCE, 114 (1), 112-122.   DOI
186 Santhosh, D. and Srinivas, V.V. (2013), "Bivariate frequency analysis of flood using a diffusion kernel density estimators", Water Resour. Res., 49, 8328-8343. doi: 10.1002/2011WR0100777.   DOI
187 Sharma, A. (2000), "Seasonal to interseasonal rainfall probabilistic forcasts for improved water supply management", J. Hydrol., 239, 249-258.   DOI
188 Saklar, A. (1959), "Functions de repartition n dimensions et leurs marges", Publ. Inst. Stat. Univ. Paris, 8, 229-231.
189 Adnan, N.A. and Atkinson, P.M. (2011), "Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment", Int. J. Climatol., 31, 815-831.   DOI
190 Ashkar, F. and Mahdi, S. (2003), "Comparison of two fitting methods for the log-logistic distribution", Water Resour. Res., 39(8), 1217, Doi 0.1029/2002WR001685.   DOI
191 Akaike, H. (1974). "A new look at the statistical model identification", IEEE T. Automat. Contr., 19(6), 716-723.   DOI
192 Bobee, B. (1974), "The log Pearson type 3 distribution and its application in hydrology", Water Resour. Res., 11(5), October 1975, 681-689.   DOI
193 Bobee, B. and Rasmussen, P.F. (1994), "Statistical analysis of annual flood series", (Eds., Menon, J.), Trend in Hydrology, 1. Council of Scientific Research Integration, India, 117-135.
194 Bras, R.L. (1990), Hydrology: an introduction to hydrologic science, Addison-Wesley, 0201059223, 9780201059229.
195 Bennett, N.D., Croke, B.F.W., Guarios, G., Guillaume, J.H.A., Hamilton, S.H., Jakeman, A.J., Marsili-Libeli, S., Newham, L.T.H., Norton, J.P., Perrin, C., Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A. and Fath, B.D. (2013), "Characterising performance of environmental models", Environ, Model. Softw., 40, 1-20.   DOI
196 Bowman, A. and Azzalini, A. (1997), Applied smoothing techniques for data analysis: the Kernel approach with S-plus illustrations, New York: Oxford University Press.
197 Brunner, M.I., Favre, A. and Seibert, J. (2016), "Bivariate return periods and their importance for flood peak and volume estimations", Wiley Interdisciplinary Reviews: Water, 3(6), 819-833. DOI: https://doi.org/10.1002/wat2.1173.   DOI
198 Boughton, W., Srikanthan, S. and Weinmann, E. (2002), "Benchmarking a new design flood estimation system", Aust. J. Water Resour., 6(1), 45-52.   DOI
199 Singh, V.P. (1998), "Log-Pearson Type III Distribution. In: Entropy-Based Parameter Estimation in Hydrology", Water Sci. Technol., 30. Springer, Dordrecht
200 Sevat, E., and Dezetter, A. (1991), "Selection of calibration objective functions in the context of rainfall-runoff modeling in a sudanese savannah area", Hydrol. Sci. J., 36(4), 307-330.   DOI
201 Salvadori, G., De Michele, C. and Durante, F. (2011), "Multivariate design via copulas", Hydrol. Earth. Syst. Sci. Discuss, 8(3), 5523-5558   DOI
202 Serinaldi, F. and Grimaldi, S. (2007), "Fully nested 3-copula procedure and application on hydrological data", J. Hydrol. Eng., 12(4), 420-430.   DOI
203 Salinas, J.L., Castellarin, A., Viglione, A., Kohnova, S. and Kjeldsen, T. (2014), "Regional parent flood frequency distributions in Europe - Part 1: Is the GEV model suitable as a pan-European parent?", Hydrol. Eart. Syst. Sci., 18, 4381-4389. https://doi.org/10.5194/hess-18-4381-2014   DOI
204 Singh, K. and Singh, V.P. (1991), "Derivation of bivariate probability density functions with exponential marginals", Stochastic Hydrol. Hydraul., 5, 55-68.   DOI
205 Stedinger, J.R., Vogel, R.M. and Georgiou, E.F. (1993), Frequency analysis of extreme events, Chapter 18 In: Handbook of Hydrology, ed. D. R. Maidment. McGraw-Hill, New York, USA.
206 Stedinger, J.R., Vogel, R.M. and Foufoula-Georgiou, E. (1992), Frequency analysis of extreme events, (Ed., Maidment, D.R.), Handbook of Hydrology, chap. 18: New York, McGraw-Hill.
207 Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, 1st edition, Chapman and Hall, London.
208 Salvadori, G. (2004), "Bivariate return periods via-2 copulas", J. Roy. Stat. Soc. Ser. B, 1, 129-144.
209 Burnham, K.P. and Anderson, D.R. (2004), Model Selection and Multimodel inference: A Practical Information-Theoretic Approach (2nd Ed.), Springer-Verlag, ISBN 0-387-9536-7.
210 Blazkova, S. and Beven, K. (2004), "Flood frequency estimation by continuous simulation of subcatchmnets rainfalls and discharges with the aim of improving dam safety assessments in a large basin in the Czech Republic", J. Hydrol., 292, 153-172.   DOI
211 Burr, I.W. (1942), "Cumulative frequency functions", Ann. Math. Statist., 13, 215-232.   DOI
212 Burnham, K.P. and Anderson, D.R. (2002), Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd Ed., Springer-Verlag, New York. http://dx.doi.org/10.1007/b97636.   DOI
213 Beirlant, J., Teugels. J.L. and Vynckier, P. (1996), Practical analysis of Extreme values, Leuven University Press, Leuven, Belgium.
214 Benth F.E. and Saltyte-Benth J. (2005), "Stochastic modelling of temperature variations with a view towards weather derivatives", Appl. Math. Finance, 12(1), 53-85.   DOI
215 Bowman, A.W. (1984), "An alternative method of cross-validations for the smoothing of kernel density estimates", Biometrika, 71, 353-360.   DOI
216 Bain, L. and Engelhardt, M. (1991), Introduction to Probability and Mathematical Statistics, Duxbury Press.
217 Buishand, T.A. (1982), "Some methods for testing the homogeneity of rainfall records", J. Hydrol., 58(1-2), 11-12.   DOI
218 Bedford, T. and Cooke, R.M. (2002), "Vines- a new graphical model for dependent random variables", Ann. Stat., 30(4), 1031-1068.   DOI