Browse > Article
http://dx.doi.org/10.12989/eas.2021.21.3.219

Seismic fragility of structures with energy dissipation devices for mainshock-aftershock events  

Noureldin, Mohamed (Department of Civil and Architectural Engineering, Sungkyunkwan University)
Adane, Michael (Department of Civil and Architectural Engineering, Sungkyunkwan University)
Kim, Jinkoo (Department of Civil and Architectural Engineering, Sungkyunkwan University)
Publication Information
Earthquakes and Structures / v.21, no.3, 2021 , pp. 219-230 More about this Journal
Abstract
This paper presents a mainshock-aftershock seismic fragility and collapse capacity assessment of reinforced concrete (RC) structures retrofitted with a hybrid damper composed of a steel slit plate and friction pads. Three and eight-story RC buildings are designed and assessed before and after retrofit considering the aftershocks effect. Non-linear time-history response analysis (NLTHA) using twelve natural earthquake sequences are used to produce incremental dynamic analysis (IDA) curves to obtain the median collapse capacity of the structures. Three different damage state (DS) levels are used for the mainshock ground excitation to quantify the scale factors required for conducting the aftershock IDAs. The maximum inter-story drift ratio (MIDR) is used as the main engineering demand parameter. The study shows the importance of considering the aftershock in the seismic assessment process of RC structures. The un-retrofitted structures are found to experience a high level of deterioration under aftershock event which is not considered in the design stage. The findings of the study reveal that the mainshock-aftershock sequence responses of the retrofitted structures show better performance in terms of the median collapse capacity and the seismic fragility compared to the un-retrofitted ones.
Keywords
energy dissipation devices; incremental dynamic analysis; mainshock-aftershock; seismic fragility; seismic retrofit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yan, X., Xu, Z.D. and Shi, Q.X. (2020), "Fuzzy neural network control algorithm for asymmetric building structure with active tuned mass damper", JVC/J. Vib. Control., 26(21-22), 2037-2049. https://doi.org/10.1177/1077546320910003.   DOI
2 Silwal, B. and Ozbulut, O.E. (2018), "Aftershock fragility assessment of steel moment frames with self-centering dampers", Eng. Struct., 168, 12-22. https://doi.org/10.1016/j.engstruct.2018.04.071.   DOI
3 Sun, C.G., Choa, H.I. and Kim, H.S. (2018), "Engineering seismological characteristics of the 12 September 2016 Gyeongju earthquakes", Earthq. Struct., 15(1), 19-27. https://doi.org/10.12989/eas.2018.15.1.019.   DOI
4 Di Trapani, F. and Malavisi, M. (2019), "Seismic fragility assessment of infilled frames subject to mainshock/aftershock sequences using a double incremental dynamic analysis approach", Bull. Earthq. Eng., 17(1), 211-235. https://doi.org/10.1007/s10518-018-0445-2.   DOI
5 Dong, Y. and Frangopol, D.M. (2015), "Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties", Eng. Struct., 83, 198-208. https://doi.org/10.1016/j.engstruct.2014.10.050.   DOI
6 Penna, A., Morandi, P., Rota, M., Manzini, C.F., da Porto, F. and Magenes, G. (2014), "Performance of masonry buildings during the Emilia 2012 earthquake", Bull. Earthq. Eng., 12(5), 2255-2273. https://doi.org/10.1007/s10518-013-9496-6.   DOI
7 Kim, J. (2019), "Development of seismic retrofit devices for building structures", Int. J. High-Rise Build., 8(3), 221-227. https://doi.org/10.21022/ijhrb.2019.8.3.221.   DOI
8 Moss, R.E.S., Thompson, E.M., Scott Kieffer, D., Tiwari, B., Hashash, Y.M.A., Acharya, I. and Uprety, S. (2015), "Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake, and aftershocks", Seismol. Res. Lett., 86(6), 1514-1523. https://doi.org/10.1785/0220150158.   DOI
9 Noureldin, M., Dereje, A.J. and Kim, J.K. (2020), "Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers", Eng. Struct., 208, 109925. https://doi.org/10.1016/j.engstruct.2019.109925.   DOI
10 SAP2000, Ver. 18 (2018), "Analysis reference manual", Comput. Struct., Berkeley, U.S.A.
11 Shokrabadi, M. and Burton, H.V. (2018), "Risk-based assessment of aftershock and mainshock-aftershock seismic performance of reinforced concrete frames", Struct. Safety., 73, 64-74. https://doi.org/10.1016/j.strusafe.2018.03.003.   DOI
12 Song, R., Li, Y. and Van De Lindt, J.W. (2016), "Loss estimation of steel buildings to earthquake mainshock-aftershock sequences", Struct. Safety., 61, 1-11. https://doi.org/10.1016/j.strusafe.2016.03.002.   DOI
13 Celik, O.C. and Ellingwood, B.R. (2009), "Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions", J. Struct. Eng., 135(4), 414-424. http://dx.doi.org/10.1061/(ASCE)0733-9445(2009)135:4(414).   DOI
14 Eldin, M., Naeem, A. and Kim, J. (2020b), "Seismic retrofit of a structure using self-centring precast concrete frames with enlarged beam ends", Mag. Concrete Res., 72(22), 1155-1170, https://doi.org/10.1680/jmacr.19.00012.   DOI
15 ACI 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14), Michigan, U.S.A.
16 ASCE-41 (2013), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, U.S.A.
17 ASCE/SEI-7 (2016), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, U.S.A.
18 Bojorquez, E. and Ruiz-Garcia, J. (2013), "Residual drift demands in moment-resisting steel frames subjected to narrow-band earthquake ground motions", Earthq. Eng. Struct Dyn., 42(11), 1583-1598. https://doi.org/10.1002/eqe.2288.   DOI
19 Lee, J., Kang, H. and Kim, J. (2017), "Seismic performance of steel plate slit-friction hybrid dampers", J. Construct. Steel Res., 136, 128-139. http://dx.doi.org/10.1016/j.jcsr.2017.05.005   DOI
20 Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable system", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.   DOI
21 DesRoches, R., Comerio, M., Eberhard, M., Mooney, W., and Rix, G.J. (2011), "Overview of the 2010 Haiti earthquake", Earthq. Spectra., 27(1_suppl1), 1-21. https://doi.org/10.1193/1.3630129.   DOI
22 Eldin, M., Assefa, J. and Kim, J. (2020a), "Seismic retrofit of framed buildings using self-centering PC frames", J. Struct. Eng., 146(10), 04020208. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002786.   DOI
23 FEMA P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington DC, U.S.A.
24 Amiri, G.G. and Rajabi, E. (2018), "Effects of consecutive earthquakes on increased damage and response of reinforced concrete structures", Comput. Concrete, 21(1), 55-66. https://doi.org/10.12989/cac.2018.21.1.055.   DOI
25 Ruiz-Garcia, J., Marin, M.V. and Teran-Gilmore, A. (2014), "Effect of seismic sequences in reinforced concrete frame buildings located in soft-soil sites", Soil Dyn. Earthq. Eng., 63, 56-68. https://doi.org/10.1016/j.soildyn.2014.03.008.   DOI
26 Noureldin, M., Ali, A., Nasab, M. and Kim, J. (2021), "Optimum distribution of seismic energy dissipation devices using neural network and fuzzy inference system", Comput. Aid. Civil Infrastruct., 1-16. https://doi.org/10.1111/mice.1267.   DOI
27 Park, S.W., Park, H.S., Oh, B.K. and Choi, S.W. (2018), "Fragility assessment model of building structures using characteristics of artificial aftershock motions", Comput. Aid. Civil Infrastruct. Eng., 33(8), 691-708. https://doi.org/10.1111/mice.12369.   DOI
28 Ruiz-Garcia, J. and Aguilar, J.D. (2015), "Aftershock seismic assessment taking into account post-mainshock residual drifts", Earthq. Eng. Struct. Dyn., 44(9), 1391-1407. https://doi.org/10.1002/eqe.2523.   DOI
29 Shcherbakov, R., Nguyen, M. and Quigley, M. (2012), "Statistical analysis of the 2010 Mw 7.1 Darfield earthquake aftershock sequence", New Zeal. J. Geol. Geophys., 55(3), 305-311. https://doi.org/10.1080/00288306.2012.676556.   DOI
30 Shokrabadi, M. and Burton, H.V. (2018), "Building service life economic loss assessment under sequential seismic events", Earthq. Eng. Struct. Dyn.., 47(9), 1864-1881.   DOI
31 Kostinakis, K. and Morfidis, K. (2017), "The impact of successive earthquakes on the seismic damage of multistory 3D R/C buildings", Earthq. Struct., 12(1), 1-12. https://doi.org/10.12989/eas.2017.12.1.001.   DOI
32 Shokrabadi, M., Burton, H.V. and Stewart, J.P. (2018), "Impact of sequential ground motion pairing on mainshock-aftershock structural response and collapse performance assessment", J. Struct. Eng., 144(10). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002170.   DOI
33 PEER, NGA Database (2019), The Pacific Earthquake Engineering Research Center, Pacific Earthq. Eng. Res. Center (PEER), Berkeley, CA, U.S.A. http://ngawest2.berkeley.edu
34 Eldin, M.N., Kim, J. and Kim, J.K. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.   DOI
35 Gaetani d'Aragona, M., Polese, M., Elwood, K.J., Baradaran Shoraka, M. and Prota, A. (2017), "Aftershock collapse fragility curves for non-ductile RC buildings", Scenario-Based Assessment, 46(13), 2083-2102. https://doi.org/10.1002/eqe.2894.   DOI
36 Goda, K., Pomonis, A., Chian, S.C., Offord, M., Saito, K., Sammonds, P. and Macabuag, J. (2013), "Ground motion characteristics and shaking damage of the 11th March 2011 Mw 9. 0 Great East Japan earthquake", Bull Earthq. Eng., 11(1), 141-170. https://doi.org/10.1007/s10518-012-9371-x.   DOI