Browse > Article
http://dx.doi.org/10.12989/eas.2017.12.2.191

Nonlinear static and dynamic behavior of reinforced concrete steel-braced frames  

Eskandari, Reyhaneh (Department of Civil Engineering, Chabahar Maritime University)
Vafaei, Davoud (Department of Civil Engineering, Chabahar Maritime University)
Vafaei, Javid (Department of Civil and Environmental Engineering, Amirkabir University of Technology)
Shemshadian, Mohammad Ebrahim (Department of Civil, Environmental, and Geo-Engineering, University of Minnesota (Twin Cities))
Publication Information
Earthquakes and Structures / v.12, no.2, 2017 , pp. 191-200 More about this Journal
Abstract
In this paper, the seismic performance of reinforced concrete braced frames (RC-BF) under far- and near-fault motions was investigated. Four-, eight-, 12- and 16-story RC-BFs were designed on the basis of a code-design method for a high risk seismic zone. Nonlinear static and dynamic analyses of the frames have been performed using OpenSees software. To consider diverse characteristics of near-fault motions, records with forward-directivity and fling-step effects were employed. From the results obtained in the analytical study it is concluded that the used design method was reasonable and the mean maximum drift of the frames under all ground motion sets were in acceptable range. For intermediate- and high-rise buildings the near-fault motions imposed higher demands than far-faults.
Keywords
reinforced concrete; steel-brace; dual system; nonlinear analysis; far- and near-fault motions;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Foutch, D.A., Hjelmstad, K.D., Calderon, E.D.V., Gutierrez, E.F. and Downs, R.E. (1989), "The Mexico Earthquake of September 19, 1985-Case studies of seismic strengthening for two buildings in Mexico City", Earthq. Spectra, 5(1), 153-174.   DOI
2 Ghaffarzadeh, H. and Maheri, M.R. (2006), "Cyclic tests on the internally braced RC frames", J. Seismol. Earthq. Eng., 8(3), 177-186.
3 Gill, W.D., Park, R. and Priestley, M.J.N. (1979), "Ductility of rectangular reinforced concrete columns with axial load", Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
4 Godinez-Dominguez, E.A. and Tena-Colunga, A. (2010), "Nonlinear behavior of code-designed reinforced concrete concentric braced frames under lateral loading", Eng. Struct., 32(4), 944-963.   DOI
5 Godinez-Dominguez, E.A., Tena-Colunga, A. and Perez-Rocha, L.E. (2012), "Case studies on the seismic behavior of reinforced concrete chevron braced framed buildings", Eng. Struct., 45, 78-103.   DOI
6 Haselton, C.B., Goulet, C.A., Mitrani-Reiser, J., Beck, J.L., Deierlein, G.G., Porter, K.A., Stewart, J.P. and Taciroglu, E. (2007), "An assessment to benchmark the seismic performance of a code-conforming reinforced concrete moment-frame building", Pacific Earthquake Engineering Research Center.
7 Huang, L., Tan, H. and Yan, L. (2014), "Seismic behavior of chevron braced reinforced concrete spatial frame", Mater. Struct., 48(12), 4005-4018.   DOI
8 Ju, M., Lee, K.S., Sim, J. and Kwon, H. (2014), "Noncompression X-bracing system using CF anchors for seismic strengthening of RC structures. Magazine of Concrete Research", 66(4), 159-174.   DOI
9 Junemann, R., de la Llera, J.C., Hube, M.A., Vasquez, J.A. and Chacon, M.F. (2016), "Study of the damage of reinforced concrete shear walls during the 2010 Chile earthquake", Earthq. Eng. Struct. D., 45(10), 1621-1641.   DOI
10 Kalkan, E. and Kunnath, S.K. (2006), "Effects of fling step and forward directivity on seismic response of buildings", Earthq. Spectra, 22(2), 367-390.   DOI
11 Kalkan, E. and Kunnath, S.K. (2007), "Assessment of current nonlinear static procedures for seismic evaluation of buildings", Eng. Struct., 29(3), 305-316.   DOI
12 Kono, S. and Watanabe, F. (2002), "Damage evaluation of reinforced concrete columns under multiaxial cyclic loadings", The Second U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinfoced Concrete Building Structures.
13 Li, G., Zhang, F., Zhang, Y. and Li, H.-N. (2015), "Nonlinear hysteretic behavior simulation of reinforced concrete shear walls using the force analogy method", Struct. Des. Tall Spec. Build., 24(7), 504-520.   DOI
14 Maheri, M.R. and Akbari, R. (2003), "Seismic behaviour factor, R, for steel X-braced and knee-braced RC buildings", Eng. Struct., 25(12), 1505-1513.   DOI
15 Maheri, M.R. and Ghaffarzadeh, H. (2008), "Connection overstrength in steel-braced RC frames", Eng. Struct., 30(7), 1938-1948.   DOI
16 Maheri, M.R. and Sahebi, A. (1997), "Use of steel bracing in reinforced concrete frames", Eng. Struct., 19(12), 1018-1024.   DOI
17 Mazzoni, S., McKenna, F., Scott, M. and Fenves, G. (2007), "OpenSees command language manual", Pacific Earthquake Engineering Research (PEER) Center.
18 Malekpour, S., Ghaffarzadeh, H. and Dashti, F. (2013), "Direct displacement-based design of steel-braced reinforced concrete frames", Struct. Des. Tall Spec. Build., 22(18), 1422-1438.   DOI
19 Mander, J., Priestley, M. and Park, R. (1988), "Theoretical stressstrain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826.   DOI
20 Massumi, A. and Absalan, M. (2013), "Interaction between bracing system and moment resisting frame in braced RC frames", Archiv. Civ. Mech. Eng., 13(2), 260-268.   DOI
21 Mostofinejad, D. and Mohammadi Anaei, M. (2012), "Effect of confining of boundary elements of slender RC shear wall by FRP composites and stirrups", Eng. Struct., 41, 1-13.   DOI
22 Panagiotakos, T.B. and Fardis, M.N. (2001), "Deformation of reinforced concrete members at yielding and ultimate", Struct. J., 98(2), 135-148.
23 Saad, G., Najjar, S. and Saddik, F. (2016), "Seismic performance of reinforced concrete shear wall buildings with underground stories", Earthq. Struct., 10(4), 965-988.   DOI
24 Tena-Colunga, A., Valle, E.D. and Perez-Moreno, D. (1996), "Issues on the seismic retrofit of a building near resonant response and structural pounding", Earthq. Spectra, 12(3), 567-597.   DOI
25 Code, U.B. (1997), "Uniform building code", In International conference of building officials, USA.
26 Uriz, P., Filippou, F. and Mahin, S. (2008), "Model for cyclic inelastic buckling of steel braces", J. Struct. Eng., 134(4), 619-628.   DOI
27 Uriz, P. and Mahin, S.A. (2008), "Toward earthquake-resistant design of concentrically braced steel-frame structures", Pacific Earthquake Engineering Research Center.
28 Vafaei, D. and Eskandari, R. (2015), "Seismic response of mega buckling-restrained braces subjected to fling-step and forwarddirectivity near-fault ground motions", Struct. Des. Tall Spec. Build., 24(9), 672-686.   DOI
29 Vafaei, D. and Eskandari, R. (2016), "Seismic performance of steel mega braced frames equipped with shape-memory alloy braces under near-fault earthquakes", Struct. Des. Tall Spec. Build., 25(1), 3-21.   DOI
30 Viswanath, K.G., Prakash, K.B. and Desai, A. (2010), "Seismic analysis of steel braced reinforced concrete frames", Int. J. Civ. Struct. Eng., 1(1), 114-122.
31 Akbari, R. and Maheri, M.R. (2011), "Analytical investigation of response modification (behaviour) factor, R, for reinforced concrete frames rehabilitated by steel chevron bracing", Struct. Infrastruct. Eng., 9(6), 507-515.   DOI
32 Wang, H., Li, G. and Huang, X. (2016), "Behavior of coupled shear walls with buckling-restrained steel plates in high-rise buildings under lateral actions", Struct. Des. Tall Spec. Build., 25(1), 22-44.   DOI
33 Youssef, M.A., Ghaffarzadeh, H. and Nehdi, M. (2007), "Seismic performance of RC frames with concentric internal steel bracing", Eng. Struct., 29(7), 1561-1568.   DOI
34 Zhao, Q. and Astaneh-Asl, A. (2004), "Cyclic behavior of an innovative steel plate shear wall system", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada.
35 Abou-Elfath, H. and Ghobarah, A. (2000), "Behaviour of reinforced concrete frames rehabilitated with concentric steel bracing", Can. J. Civ. Eng., 27(3), 433-444.   DOI
36 AISC (2005), Specification for Structural Steel Buildings.
37 Asgarian, B., Aghakouchack, A.A. and Bea, R.G. (2005), "Inelastic postbuckling and cyclic behavior of tubular braces", J. Offshore Mech. Arctic Eng., 127(3), 256-262.   DOI
38 Badoux, M. and Jirsa, J.O. (1990), "Steel bracing of RC frames for seismic retrofitting", J. Struct. Eng., 116(1), 55-74.   DOI
39 Beiraghi, H., Kheyroddin, A. and Kafi, M.A. (2015), "Nonlinear fiber element analysis of a reinforced concrete shear wall subjected to earthquake records", Iran. J. Sci. Technol. Trans. Civ. Eng., 39(C2+), 409-422.
40 Beko, A., Rosko, P., Wenzel, H., Pegon, P., Markovic, D. and Molina, F.J. (2015), "RC shear walls: Full-scale cyclic test, insights and derived analytical model", Eng. Struct., 102, 120-131.   DOI
41 Del Valle, E. (1980), "Some lessons from the March 14, 1979 earthquake in Mexico City", 7th world conference on earthquake engineering, Istanbul, Turkey.
42 Black, G.R., Wenger, B.A. and Popov, E.P. (1980), "Inelastic buckling of steel struts under cyclic load reversals", UCB/EERC-80/40, Earthquake Engineering Research Center, Berkeley, California.
43 Bush, T., Jones, E. and Jirsa, J. (1991), "Behavior of RC frame strengthened using structural steel bracing", J. Struct. Eng., 117(4), 1115-1126.   DOI
44 Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solids and Structures, John Wiley & Sons, Inc., New York.
45 Del Valle, E., Foutch, D.A., Hjelmstad, K.D., Figueroa-Gutierrez, E. and Tena-Colunga, A. (1988), "Seismic retrofit of a RC building: a case study", 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
46 El-Amoury, T. and Ghobarah, A. (2005), "Retrofit of RC frames using FRP jacketing or steel bracing", J. Seismol. Earthq. Eng., 7(2), 83-94.
47 Eskandari, R. and Vafaei, D. (2015), "Effects of near-fault records characteristics on seismic performance of eccentrically braced frames", Struct. Eng. Mech., 56(5), 855-870.   DOI
48 Farahi, M. and Mofid, M. (2013), "On the quantification of seismic performance factors of Chevron Knee Bracings, in steel structures", Eng. Struct., 46, 155-164.   DOI
49 Fardis, M.N. and Biskinis, D.E. (2003), "Deformation capacity of RC members, as controlled by flexure or shear", Otani Symposium, 511-530.