Browse > Article
http://dx.doi.org/10.12989/eas.2014.7.6.937

Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers  

Xu, Longhe (School of Civil Engineering, Beijing Jiaotong University)
Li, Zhongxian (School of Civil Engineering, Tianjin University)
Lv, Yang (School of Civil Engineering, Tianjin University)
Publication Information
Earthquakes and Structures / v.7, no.6, 2014 , pp. 937-953 More about this Journal
Abstract
A semi-active control platform comprising the mechanical model of magnetorheological (MR) dampers, the bang-bang control law and damage material models is developed, and the simulation method of steel plate shear wall (SPSW) and optimization method for capacity design of MR dampers are proposed. A 15-story steel frame-SPSW structure is analyzed to evaluate the seismic performance of nonlinear semi-active controlled structures with optimal designed MR dampers, results indicate that the control platform and simulation method are stable and fast, and the damage accumulation effects of uncontrolled structure are largely reduced, and the seismic performance of controlled structures has been improved.
Keywords
steel plate shear wall; magnetorheological (MR) damper; control platform; nonlinear analysis; seismic damage control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Li, Q.S., Liu, D.K., Leung, A.Y.T., Zhang, N., Luo, Q.Z. (2002), "A multilevel genetic algorithm for optimum design of structural control systems", Int. J. Numer. Meth. Eng., 55(7), 817-834.   DOI
2 Lin, W., Li, Z.X. and Ding, Y. (2008), "Trust-region based instantaneous optimal semi-active control of long-span spatially extended structures with MRF-04K damper", Earthq. Eng. Eng. Vib., 7(4), 447-464.   DOI
3 Liu, X., Begg, D.W., Mattravers, D.R. (1997), "Optimal topology/actuator placement design of structures using SA", J. Aerospace Eng.-ASCE, 10(3), 119-125.   DOI
4 Lu, Q., Peng, Z., Chu, F., Huang, J. (2003), "Design of fuzzy controller for smart structures using genetic algorithms", Smart Mater. Struct., 12(6), 979-986.   DOI   ScienceOn
5 Ohtori, Y., Spencer, B.F., Jr. and Dyke, S.J. (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech.-ASCE, 130(4), 366-385.   DOI   ScienceOn
6 Pirondi, A., Bonora, N., Steglich, D., et al. (2006), "Simulation of failure under cyclic plastic loading by damage models", Int. J. Plasticity, 22 (11), 2146-2170.   DOI
7 Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19(9), 718-723.   DOI   ScienceOn
8 Thorburn, L.J., Kulak, G.L., Montgomery, C.J. (1983), "Analysis of steel plate shear walls", Structural Engineering Report No. 107, University of Alberta, Edmonton, Alberta.
9 Wang, D.H. and Liao, W.H. (2005), "Modeling and control of magnetorheological fluid dampers using neural networks", Smart Mater. Struct., 14(1), 111-126.   DOI   ScienceOn
10 Wongprasert, N., Symans, M.D. (2004), "Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building", J. Eng. Mech.-ASCE, 130(4), 401-406.   DOI
11 Xu, L.H. and Li, Z.X. (2008), "Semiactive multi-step predictive control of structures using MR dampers", Earthq. Eng. Struct. D., 37(12), 1435-1448.   DOI   ScienceOn
12 Xu, L.H. and Li, Z.X. (2011), "Model predictive control strategies for protection of structures during earthquakes", Struct. Eng. Mech., 40(2), 233-243.   DOI
13 Yoshida, O. and Dyke, S.J. (2004), "Seismic control of a nonlinear benchmark building using smart dampers", J. Eng. Mech.-ASCE, 130(4), 386-392.   DOI   ScienceOn
14 Feng, Q. and Shinozuka, M. (1990), "Use of a variable damper for hybrid control of bridge response under earthquake", Proceedings of the US National Workshop on Structure Control Research, USC Publication No. CE-9013, pp. 107-112, Los Angeles, CA, USA.
15 Berman, J.W. (2011), "Seismic behavior of code designed steel plate shear walls", Eng. Struct., 33(1), 230-244.   DOI   ScienceOn
16 Bonora, N. (1997), "A nonlinear CDM model for ductile failure", Eng. Fract. Mech., 58, 11-28.   DOI   ScienceOn
17 Dyke, S.J., Spencer Jr., B.F. (1996), "Seismic response control using multiple MR dampers", Proceedings of the 2nd International Workshop on Structure Control, pp. 163-173, Hong Kong.
18 Foutch, D.A. and Yun, S.Y. (2002), "Modeling of steel moment frames for seismic loads", J. Constr. Steel Res., 58(5-8), 529-564.   DOI   ScienceOn
19 Jansen, L.M. and Dyke, S.J. (2000), "Semiactive control strategies for MR dampers: comparative study", J. Eng. Mech.-ASCE, 2000, 126(8), 795-803.   DOI   ScienceOn
20 Johnson, E.A. and Erkus, B. (2007), "Dissipativity and performance analysis of smart dampers via LMI synthesis", Struct. Control Hlth., 14(3), 471-496.   DOI
21 Kim, Y., Langari, R. and Hurlebaus, S. (2008), "Semiactive nonlinear control of a building with magnetorheological damper system", Mech. Syst. Signal Pr., 23(2), 300-315.
22 Lee, D.Y. and Wereley, N.M. (2000), "Analysis of electro-and magnetorheological flow mode dampers using Herschel-Bulkley model", Processing of the SPIE, Smart Structures and Materials: Damping and Isolation, pp. 244-255, Newport Beach, CA, USA, March 6.
23 Li, L., Song, G. and Ou, J.P. (2010), "A genetic algorithm-based two-phase design for optimal placement of semi-active dampers for nonlinear benchmark structure", J. Vib. Control, 16(9), 1379-1392.   DOI