Estimating anaerobic reductive dechlorination of chlorinated compounds in groundwater by indigenous microorganisms |
Park, Sunhwa
(National Institute of Environmental Research)
Kim, Deok Hyun (National Institute of Environmental Research) Yoon, JongHyun (National Institute of Environmental Research) Kwon, JongBeom (National Institute of Environmental Research) Choi, Hyojung (National Institute of Environmental Research) Kim, Ki-In (Mokpo National University) Han, Kyungjin (Korea national university of transportation) Kim, Moonsu (National Institute of Environmental Research) Shin, Sun-Kyoung (National Institute of Environmental Research) Kim, Hyun-Koo (National Institute of Environmental Research) |
1 | Means, B. (1989), "Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report", Research Report No. PB-90-155581/XAB; EPA-540/1-89/002; Environmental Protection Agency, Office of Solid Waste and Emergency Response,Washington, D.C., U.S.A. |
2 | Na, C.K. and Son, C.I. (2005), "Groundwater quality and pollution characteristics at Seomjin river basin: Pollution source and risk assessment", Econ. Environ. Geol., 38(3), 261-272. |
3 | Nijenhuis, L. and Kuntze, K. (2016), "Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies", Curr. Opin. Biotech., 38, 33-38. https://doi.org/10.1016/j.copbio.2015.11.009. DOI |
4 | Cho, C.H. and Sung, K.J. (2013), "The characteristics of shallow groundwater in petroleum contaminated site and the assessment of efficiency of biopile by off-gas analysis", J. Soil Groundwater Environ., 18(2), 36-44. https://doi.org/10.7857/JSGE.2013.18.2.036. DOI |
5 | Hendrickson, E.R., Payne, J.A., Young, R.M., Starr, M.G., Perry, M.P., Fahnestock, S., Ellis, D.E. and Ebersole, R.C. (2002), "Molecular analysis of dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north america and europe", Appl. Environ. Microb., 68(2), 485-495. https://doi.org/10.1128/AEM.68.2.485-495.2002. DOI |
6 | Coleman, N.V., Mattes, T.E., Gossett, J.M. and Spain, J.C. (2002), "Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium", Appl. Environ. Microb., 68(6), 2726-2730. https://doi.org/10.1128/AEM.68.6.2726-2730.2002. DOI |
7 | Baker, C.D., Beaton, M.A., Polito, K.E., Suuberg, M. (2016), MCP numerical standards, Commonwealth of massachusetts executive office of energy & environmental affairs; Department of environmental protection, Boston, Maimi, U.S.A. |
8 | Aeppli, C., Hofstetter, T.B., Amaral, H.I., Kipfer, R., Schwarzenbach, R.P. and Berg, M. (2010), "Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances", Environ. Sci. Technol., 44(10), 3705-3711. https://doi.org/10.1021/es903895b. DOI |
9 | Ahn, Y.H., Choi, J.D., Kim, Y., Kwon, S.Y. and Park, H.W. (2006), "Anaerobic reductive dechlorination of tetrachloroethylene (PCE) in two-in-series semi-continuous soil columns", J. Soil Groundwater Environ., 11(2), 68-76. |
10 | Aulenta, F., Majone, M. and Tandoi, V. (2006), "Enhanced anaerobic bioremediation of chlorinated solvents: Environmental factors influencing microbial activity and their relevance under field conditions", J. Chem. Technol. Biot., 81(9), 1463-1474. https://doi.org/10.1002/jctb.1567. DOI |
11 | Khan, S.T., Horiba, Y., Yamamoto, M. and Hiraishi, A. (2002), "Members of the family comamonadaceae as primary poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach", Appl. Environ. Microb., 68(7), 3206-3214. https://doi.org/10.1128/AEM.68.7.3206-3214.2002. DOI |
12 | Kim, J.H. (1998), "Simulation of DNAPL and LNAPL transport phenomena in unsaturated zone and saturated zone", Korean Chem. Eng. Res., 36(6), 846-843. |
13 | Elsner, M., Zwank, L., Hunkeler, D. and Schwarzenbach, R.P. (2005), "A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants", Environ. Sci. Technol., 39(18), 6896-6916. https://doi.org/10.1021/es0504587. DOI |
14 | EPA (2004), "Risk assessment guidance for superfund Volume I: Human health evaluation manual Part E, Supplemental guidance for dermal risk assessment", US Environmental Protection Agency, Washington, D.C., U.S.A. |
15 | EPA (1992), "Guidelines for exposure assessment", Research Report No. EPA/600/Z-92/001; US Environmental Protection Agency, Office of Health and Environmental Assessment, Washington D.C., U.S.A. |
16 | EPA (1996), "Proposed guidelines for carcinogen risk assessment", Research Report No. EPA/600/P-92/003C; US Environmental Protection Agency, Office of Health and Environmental Assessment, Washington D.C., U.S.A. |
17 | EPA (2001), "Risk assessment guidance for superfund volume III Part A, process for conducting probabilistic risk assessment)", US Environmental Protection Agency, Washington, D.C., U.S.A. |
18 | EPA (2005), "Guidelines for carcinogen risk assessment", Research Report No. EPA/630/P-03/001F; US Environmental Protection Agency, Office of Health and Environmental Assessment, Washington D.C., U.S.A. |
19 | EPA (2006), "Engineering forum issue paper : In situ treatment technologies for contaminated soil", Research Report No. 542/F-06/013; US Environmental Protection Agency, Office of Health and Environmental Assessment, Washington D.C., U.S.A. |
20 | Park, S., Han, K., Hong, U., Ahn, H., Kim, N., Kim, H., Kim, T. and Kim, Y. (2012), "Monitoring anaerobic reductive dechlorination of TCE by biofilm-type culture in continuous-flow system", J. Soil Groundwater Environ., 17(5), 49-55. https://doi.org/10.7857/jsge.2012.17.5.049. DOI |
21 | Park, Y., Lee, J.Y., Na, W.J., Kim, R.H., Choi, P.S. and Jun, S.C. (2013), "A review on Identification methods for TCE contamination sources using stable isotope compositions", J. Soil Groundwater Environ., 18(3), 1-10. https://doi.org/10.7857/jsge.2013.18.3.001. DOI |
22 | Li, Y., Li, B., Wang, C.P., Fan, J.Z. and Sun, H.W. (2014), "Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates", Int. J. Mol. Sci., 15(5), 9134-9148. https://doi.org/10.3390/ijms15059134. DOI |
23 | Holliger, C., Wohlfarth, G. and Diekert, G. (1998), "Reductive dechlorination in the energy metabolism of anaerobic bacteria", FEMS Microbiol. Rev., 22(5), 383-398. https://doi.org/10.1111/j.1574-6976.1998.tb00377.x. DOI |
24 | Fennell, D.E., Carroll, A.B., Gossett, J.M. and Zinder, S.H. (2001), "Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data", Environ. Sci. Technol., 35(9), 1830-1839. https://doi.org/10.1021/es0016203. DOI |
25 | Gafni, A., Siebner, H. and Bernstein, A. (2020), "Potential for co-metabolic oxidation of TCE and evidence for its occurrence in a large-scale aquifer survey", Water Res., 171, 115431. https://doi.org/10.1016/j.watres.2019.115431. DOI |
26 | Ham, S.Y., Kim, G.G., Oh, Y.Y., Lee, C.M. (2013), "Development of estimation and modeling techniques of groundwater-derived pollution load in stream", Research Report No. 172- 112-013; Ministry of environment, South Korea. |
27 | Hornung, R.W. and Reed, L.D. (1990), "Estimation of average concentration in the presence of nondetectable values", Appl. Occup. Environ. Hyg., 5(1), 46-51. https://doi.org/10.1080/1047322X.1990.10389587. DOI |
28 | Jang, J.Y., Jo, S.N., Kim, S.Y., Kim S.J., Cheong, H.K. (2007), Korean Exposure Factors Handbook, Ministry of environment, South Korea. |
29 | Lee, J., Seo, M., Cho, H., Oh, S., Choi, I., Park, J., Lee, S., Cha, Y., Kim, G., Jeon, J. and Jung, K. (2014), "Contamination properties of chlorinated organic solvents(TCE, PCE) and their biodegraded products in groundwater in Seoul", Research Report No. 50. 237-247; Government research institute of public health and environment, South Korea. |
30 | Kavanaugh, M.C., Suresh, P. and Rao, C. (2003), The DNAPL Remediation Challenge: Is There A Case For Source Depletion?, Environmental Protection Agency, Washington D.C., U.S.A. |
31 | Dolinova, I., Strojsova, M., Cernik, M., Nemecek, J., Machackova, J. and Sevcu, A. (2017), "Microbial degradation of chloroethenes: A review", Environ. Sci. Pollut. R., 24(15), 13262-13283. https://doi.org/10.1007/s11356-017-8867-y. DOI |
32 | Saiyari, D.M., Chuang, H.P., Senoro, D.B., Lin, T.F., Whang, L.M., Chiu, Y.T. and Chen, Y.H. (2018), "A review in the current developments of genus dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater", Sustain. Environ. Res., 28(4), 149-157. https://doi.org/10.1016/j.serj.2018.01.006. DOI |
33 | Korea Law Information Center (2019), Rules on Groundwater Quality Conservation, etc. in article 11, Standards of Groundwater Quality; Ministry of environment, South Korea. https://www.law.go.kr. |
34 | Xiao, Z., Jiang, W., Chen, D. and Xu, Y. (2020), "Bioremediation of typical chlorinated hydrocarbons by microbial reductive dichlorination and its key players: A review", Ecotoxicol. Environ. Safe., 202, 110925. https://doi.org/10.1016/j.ecoenv.2020.110925. DOI |
35 | An, C.Y., Kim, H.S., Baek, G.H., Kim, B.H., Joe, D.H. (2009), "Development of biocatalyst for dechlorination from metagenome", Research Report No. 052-071-061; Ministry of environment, South Korea. |
36 | Carranzo, I.V. (2012), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington D.C., U.S.A. |
37 | Hunkeler, D., Abe, Y., Broholm, M.M., Jeannottat, S., Westergaard, C., Jacobsen, C.S., Aravena, R. and Bjerg, P.L. (2011), "Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR", J. Contam. Hydrol., 119(1-4), 69-79. https://doi.org/10.1016/j.jconhyd.2010.09.009. DOI |
38 | IRIS (2016), IRIS Program; EPA, Washington D.C., U.S.A. http://www.epa.gov/iris. |
39 | Jeen, S.W., Jun, S.C., Kim, R.H. and Hwang, H.T. (2016), "Assessment of natural attenuation processes in the groundwater contaminated with trichloroethylene (TCE) using multi-species reactive transport modeling", J. Soil Groundwater Environ., 21(6), 101-113. https://doi.org/10.7857/JSGE.2016.21.6.101. DOI |
40 | Jeon, S.R., Chung, J.I. and Kim, D.H. (2002), "Environmental effects from natural waters contaminated with acid mine drainage in the abandoned backun mine area", Econ. Environ. Geol., 35(4), 325-337. |
41 | Kawabe, Y. and Komai, T. (2019), "A case study of natural attenuation of chlorinated solvents under unstable groundwater conditions in Takahata, Japan", Bull. Environ. Contam. Toxicol., 102(2), 280-286. https://doi.org/10.1007/s00128-019-02546-9. DOI |
42 | Song, D., Park, S., Jeon, S.H., Hwang, J.Y., Kim, M., Jo, H.J., Kim, D.H., Lee, G.M., Kim, K.I, Kim, H.J., Kim, T.S., Chung, H.M. and Kim, H.K. (2017), "Evaluation on four volatile organic compounds(VOCs) contents in the groundwater and their human risk level", Korean J. Soil Sci. Fert., 50(4), 235-250. https://doi.org/10.7745/KJSSF.2017.50.4.235. DOI |
43 | Vogel, T.M., Criddle, C.S. and McCarty, P.L. (1987), "ES&T critical review: Transformations of halogenated aliphatic compounds", Environ. Sci. Technol., 21(8), 722-736. https://doi.org/10.1021/es00162a001. DOI |
44 | Walter, J., Chesnaux, R., Cloutier, V. and Gaboury, D. (2017), "The influence of water/rock-water/clay interactions and mixing in the salinization processess of groundwater", J. Hydrol., 13, 168-188. https://doi.org/10.1016/j.ejrh.2017.07.004. DOI |
45 | WGS (2020), Whole genome sequence; Korea environmental microorganisms bank, Suwon, South Korea. https://kemb.or.kr/07web02.php. |
46 | WDNR (2014), "Understanding chlorinated hydrocarbon behavior in groundwater : Guidance on the investigation, assessment and limitations of monitored natural attenuation", Research Report No. RR-699; Wisconsin department of natural resources, U.S.A. |
47 | WHO (2017), "Guidelines for drinking-water quality", WHO Chronicle, 38(4), 104-108. |
48 | Loffler, F.E., Tiedje, J.M. and Sanford, R.A. (1999), "Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology", Appl. Environ. Microb., 65(9), 4049-4056. https://doi.org/10.1128/AEM.65.9.4049-4056.1999. DOI |
49 | Leeson, A., Beevar, E., Henry, B., Fortenberry, J. and Coyle, C. (2004), "Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents", Research Report No. ADA511850; Naval Facilities Engineering Service Center, Port Hueneme, California, U.S.A. |
50 | Yu, J., Park, Y., Seon, J., Hong, S., Cho, S. and Lee, T. (2012), "Biological dechlorination of chlorinated ethylenes by using bioelectrochemical system", Korean Soc. Environ. Eng., 34(5), 304-311. https://doi.org/10.4491/KSEE.2012.34.5.304. DOI |
51 | Marco-Urrea, E., Garcia-Romera, I. and Aranda, E. (2015), "Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons", New Biotechnol., 32(6), 620-628. https://doi.org/10.1016/j.nbt.2015.01.005. DOI |
52 | McCarty, P.L. (2010), Groundwater Contamination by Chlorinated Solvents: History, Remediation Technologies and Strategies In In Situ Remediation of Chlorinated Solvent Plumes, Springer, New York, U.S.A. |
53 | Kim, T.R., Kim, S. and Chung, J.D. (2019), "Characteristics of TCE contamination distribution of groundwater around the workplaces using chloride organic solvents, J. Korea Soc", Waste Manage, 36(1), 88-96. DOI |