Browse > Article
http://dx.doi.org/10.12989/mwt.2021.12.4.157

Electrochemical reduction of nitrate using divided electrolytic cell by proton exchange membrane  

Cha, Ho Young (Department of Civil and Environmental Engineering, Konkuk University)
Park, Youngho (Department of Civil and Environmental Engineering, Konkuk University)
Seong, Kee-Won (Department of Civil and Environmental Engineering, Konkuk University)
Park, Ki Young (Department of Civil and Environmental Engineering, Konkuk University)
Publication Information
Membrane and Water Treatment / v.12, no.4, 2021 , pp. 157-164 More about this Journal
Abstract
The electrochemical reduction of nitrate using a divided electrolytic cell in combination with Zn cathode and (Pt)/Ti anode reduced the high concentrations of nitrate (1,000 mg NO3-N/L). A proton exchange membrane (Nafion-117) was used to increase the nitrate reduction efficiency by preventing the re-oxidation of nitrite produced during the reduction process. The current density and anolyte concentration, considered as parameters, were tested to assess the electrochemical reduction of nitrate. The reduction of nitrate shortened the electrolysis time in proportion to the current density, and the time for 90% removal was 5 h at 5 mA/cm2, 3 h at 10 mA/cm2, and 1.8 h at 20 mA/cm2. The yields of ammonia were approximately 50%-55% of the initial nitrate-nitrogen concentration regardless of the current density and was insignificantly related to the anolyte concentration.
Keywords
anolyte concentration; divided electrolytic cell; electrodialysis; limiting current density; proton exchange membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Horanyi, G. and Rizmayer, E.M. (1985), "Electrocatalytic reduction of NO2- and NO3- ions at a platinized platinum electrode in alkaline medium", J. Electroanal. Chem. Interf. Electrochem., 188(1-2), 265-272. https://doi.org/10.1016/S0022-0728(85)80067-X.   DOI
2 Park, K.Y., Cha, H.Y., Chantrasakdakul, P., Lee, K., Kweon, J.H., and Bae, S. (2017), "Removal of nitrate by electrodialysis: effect of operation parameters", Membr. Water Treat., 8(2), 201-210. https://doi.org/10.12989/mwt.2018.8.2.201.   DOI
3 Akarsu, C., Ayol, A. and Taner, F. (2017), "Treatment of domestic wastewater by using electrochemical process using different metal electrodes", JSM Environ. Sci. Ecol., 5(2), 1043.
4 Bockris, J.M. and Kim, J. (1997), "Electrochemical treatment of low-level nuclear wastes", J. Appl. Electrochem., 27(6), 623-634. https://doi.org/10.1023/A:1018419316870.   DOI
5 Bosko, M.L., Rodrigues, M.A.S., Ferreira, J.Z., Miro, E.E. and Bernardes, A.M. (2016), "Nitrate reduction of brines from water desalination plants by membrane electrolysis", J. Membr. Sci., 451, 276-284. https://doi.org/10.1016/j.memsci.2013.10.004.   DOI
6 Bouzek. K., Paidar, M., Sadilkova, A. and Bergmann, H. (2001), "Electrochemical reduction of nitrate in weakly alkaline solutions", J. Appl. Electrochem., 31(11), 1185-1193. https://doi.org/10.1023/A:1012755222981.   DOI
7 Carmo, M., Fritz, D., Mergel, J. and Stolten, D.A. (2013), "A comprehensive review on PEM electrolysis", Int. J. Hydrogen Energ., 38(12), 4901-4934. https://doi.org/10.1016/j.ijhydene.2013. 01.151.   DOI
8 Constantinou, C.L., Costa, C.N. and Efstathiou, A.M. (2010), "Catalytic removal of nitrates from waters", Catal. Today, 151(1-2), 190-194. https://doi.org/10.1016/j.cattod.2010.02.019.   DOI
9 Min, K.J., Kim, J.H. and Park, K.Y. (2021), "Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment", Sci. Total Environ., 757, 143762. https://doi.org/10.1016/j.scitotenv.2020.143762.   DOI
10 Chiu, Y., Lee, L., Chang, C. and Chao, A.C. (2007), "Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor", Int. Biodeter. Biodegr., 59(1), 1-7. https://doi.org/10.1016/j.ibiod.2006.08.001.   DOI
11 Dima, G.E., Vooys, A.C.A. and Koper, M.T.M. (2003), "Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions", J. Electroanal. Chem., 554, 15-23. https://doi.org/10.1016/S0022-0728(02)01443-2.   DOI
12 Fanning, J.C. (2000), "The chemical reduction of nitrate in aqueous solution", Coordin. Chem. Rev., 199(1), 159-179. https://doi.org/10.1016/S0010-8545(99)00143-5.   DOI
13 Hiscock, K.M., Lloyd, J.W. and Lerner, D.N. (1991), "Review of natural and artificial denitrification of groundwater", Water Res., 25(9), 1099-1111. https://doi.org/10.1016/0043-1354(91)90203-3.   DOI
14 Lee, J., Cha, H.Y., Min, K.J. Cho, J. and Park, K.Y. (2018), "Electrochemical nitrate reduction using a cell divided by ion-exchange membrane", Membr. Water Treat., 9(3), 189-194. https://doi.org/10.12989/mwt.2018.9.3.189.   DOI
15 Li, M., Feng, C., Zhang, Z., and Sugiura, N. (2009), "Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes", Electrochim. Acta, 54(20), 4600-4606. https://doi.org/10.1016/j.electacta.2009.03.064.   DOI
16 Paidar, K.M., Bouzek, K. and Bergmann, H. (2002), "Influence of cell construction on the electrochemical reduction of nitrate", Chem. Eng. J., 85(2-3), 99-109. https://doi.org/10.1016/S1385-8947(01)00158-9.   DOI
17 Martinez, J., Ortiz, A. and Ortiz, I. (2017), "State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates", Appl. Catal. B Environ., 207, 42-59. https://doi.org/10.1016/j.apcatb.2017.02.016.   DOI
18 Garcia-Segura, S., Lanzarini-Lopes, M. Hristovski, K. and Westerhoff, P. (2018), "Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications", Appl. Catal. B Environ., 236, 546-568. https://doi.org/10.1016/j.apcatb.2018.05.041.   DOI
19 Min, K.J., Oh, E.J., Kim, G., Kim, J.H., Ryu, J.H. and Park, K.Y. (2020), "Influence of linear flow velocity and ion concentration on limiting current density during electrodialysis", Desalin. Water Treat., 175, 334-340. https://doi.org/10.5004/dwt.2020.24663.   DOI
20 Modisha, P. and Bessarabov, D. (2016), "Electrocatalytic process for ammonia electrolysis: A remediation technique with hydrogen co-generation", Int. J. Electrochem. Sci., 11, 6627-6635. https://doi.org/10.20964/2016.08.54.   DOI
21 Polatides, C., Dortsiou, M. and Kyriacou, G. (2005), "Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis", Electrochim. Acta, 50(25), 5237-5241. https://doi.org/10.1016/j.electacta.2005.01.057.   DOI
22 Szpyrkowicz, L., Daniele, S., Radaelli, M. and Specchia, S. (2006), "Removal of NO3- from water by electrochemical reduction in different reactor configurations", Appl. Catal. B Environ., 66(1), 40-50. https://doi.org/10.1016/j.apcatb.2006.02.020.   DOI
23 Raka, Y.D., Bock, R., Karoliussen, H., Wilhelmsen, O. and Stokke Burheim, O. (2021), "The influence of concentration and temperature on the membrane resistance of ion exchange membranes and the levelised cost of hydrogen from reverse electrodialysis with ammonium bicarbonate", Membranes, 11(2), 135. https://doi.org/10.3390/membranes11020135.   DOI
24 Samatya, S., Kabay, N., Yuksel, U., Arda, M. and Yuksel, M. (2006), "Removal of nitrate from aqueous solution by nitrate selective ion exchange resins", React. Funct, Polym., 66(11), 1206-1214. https://doi.org/10.1016/j.reactfunctpolym.2006.03.009.   DOI
25 Scharifker, B.R., Mostany, J. and Serruya, A. (2000), "Catalytic reduction of nitrate during electrodeposition of thallium from Tl3+ solution", Electrochem. Commun., 2(6), 448-451. https://doi.org/10.1016/S1388-2481(00)00052-7.   DOI
26 Pintar, A. and Batista, J. (2007), "Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors", J. Hazard. Mater., 149(2), 387-398. https://doi.org/10.1016/j.jhazmat.2007.04.004.   DOI
27 El Midaoui, A., Elhannouni, F, Taky, M., Chay, L., Menkouchi Sahli, M.A., Echihabi, L. and Hafsi, M. (2002), "Optimization of nitrate removal operation from ground water by electrodialysis", Sep. Purif. Technol., 29(3), 235-244. https://doi.org/10.1016/S1383-5866(02)00092-8.   DOI
28 Guo, M., Feng, L., Liu, Y. and Zhang, L. (2020), "Electrochemical simultaneous denitrification and removal of phosphorus from the effluent of a municipal wastewater treatment plant using cheap metal electrodes", Environ. Sci. Water Res. Technol., 6(4), 1095-1105. https://doi.org/10.1039/D0EW00049C.   DOI
29 Kim, M., Chung, J., Yoo, C., Lee, M.S., Cho, I., Lee, D. and Lee, K. (2013), "Catalytic reduction of nitrate in water over Pd-Cu/TiO2 catalyst: Effect of the strong metal-support interaction (SMSI) on the catalytic activity", Appl. Catal. B Environ., 142, 354-361. https://doi.org/10.1016/j.apcatb.2013.05.033.   DOI
30 March, J.G. and Gual, M. (2007), "Breakpoint chlorination curves of greywater", Water Environ. Res., 79(8), 828-832. https://doi.org/10.2175/106143007x156736.   DOI
31 Reyter, D., Belanger, D. and Roue, L. (2011), "Optimization of the cathode material for nitrate removal by a paired electrolysis process", J. Hazard. Mater., 192(2), 507-13. https://doi.org/10.1016/j.jhazmat.2011.05.054.   DOI
32 Schoeman, J.J., and Steyn, A. (2003), "Nitrate removal with reverse osmosis in a rural area in South Africa", Desalination, 155(1), 15-26. https://doi.org/10.1016/S0011-9164(03)00235-2.   DOI
33 Werth, C.J., Yan, C. and Troutman, J.P. (2021), "Factors impeding replacement of ion exchange with (electro)catalytic treatment for nitrate removal from drinking water", ACS ES&T Eng., 1(1), 6-20. https://doi.org/10.1021/acsestengg.0c00076.   DOI
34 Oh, E., Kim, J., Ryu, J.H., Min, K.J., Shin, H.G. and Park, K.Y. (2020), "Influence of counter anions on metal separation and water transport in electrodialysis treating plating wastewater", Membr. Water Treat., 11(3), 201-206. https://doi.org/10.12989/mwt.2020.11.3.201.   DOI
35 Barrabesa, N. and Sa, J. (2011), "Catalytic nitrate removal from water, past, present and future perspectives", Appl. Catal. B Environ., 104(1-2), 1-5. https://doi.org/10.1016/j.apcatb.2011.03.011.   DOI
36 Min, K.J., Choi, S.Y., Jang, D., Lee, J. and Park, K.Y. (2019), "Separation of metals from electroplating wastewater using electrodialysis", Energ. Source Part A, 41(20), 2471-2480. https://doi.org/10.1080/15567036.2019.1568629.   DOI
37 Vazac, K., Paidar, M., Roubalik, M. and Bouzek, K. (2014), "Impact of the cation exchange membrane thickness on the alkaline water electrolysis", Chem. Eng. Trans., 41, 187-192. https://doi.org/10.3303/CET1441032.   DOI
38 Xu, D., Li, Y., Yin, L., Ji, Y. Niu, J. and Yu, Y. (2018), "Electrochemical removal of nitrate in industrial wastewater", Front. Environ. Sci. Eng., 12(1), 9. https://doi.org/10.1007/s11783-018-1033-z.   DOI