Browse > Article
http://dx.doi.org/10.12989/mwt.2021.12.4.149

Copper and nickel removal from plating wastewater in the electrodialysis process using a channeled stack  

Min, Kyung Jin (Department of Civil and Environmental Engineering, Konkuk University)
Kim, Joo Hyeong (Department of Civil and Environmental Engineering, Konkuk University)
Kim, Sun Wouk (Department of Civil and Environmental Engineering, Konkuk University)
Lee, Seunghyun (Department of Civil and Environmental Engineering, Konkuk University)
Shin, Hyun-Gon (Department of Energy and Environmental Engineering, Shinhan University)
Park, Ki Young (Department of Civil and Environmental Engineering, Konkuk University)
Publication Information
Membrane and Water Treatment / v.12, no.4, 2021 , pp. 149-155 More about this Journal
Abstract
Electrodialysis (ED) is an advanced separation process used to treat industrial wastewater using potential differences. In this study, flow rates within the stack were increased by creating a flow channel to increase the limiting current density (LCD). Increasing the flow rate within the stack increases the diffusion flux, which leads to an increase in LCDs. Experiments show that the applied voltage of the flow-accelerated stack was improved by 12.2% compared to the stack without a flow channel, but the LCD decreased by 3.6%. The removal efficiency of both copper and nickel between the two stacks was greater than 95.6%, with no significant difference. However, the concentration rate of ions was superior in the stack without a flow channel. This may be attributed to the fact that the applied voltage increases when the channel is attached, resulting in differences in the separation rate and the resulting concentration polarization. In terms of the current efficiency, the channel-less stack was found to be 42.5% better than the channeled stack. It would be desirable to apply voltages below the LCDs as those exceeding LCDs at the same membrane flow rate would significantly reduce the economic feasibility.
Keywords
channeled stack; current efficiency; economic feasibility; electrodialysis; limiting current density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, H., Sarfert, F., Strathmann, H. and Moon, S. (2002), "Designing of an electrodialysis desalination plant", Desalination, 142, 267-286. https://doi.org/10.1016/S0011-9164(02)00208-4.   DOI
2 Mareev, S.A., Butylskii, D.Y., Pismenskaya, N.D., Larchet, C., Dammak, L. and Nikonenko, V.V. (2018), "Geometric heterogeneity of homogeneous ion-exchange Neosepta membranes", J. Membr. Sci., 563, 768-776. https://doi.org/10.1016/ j.memsci.2018.06.018.   DOI
3 Lee, C.G., Lee, S., Park, J.A., Park, C., Lee, S.J., Kim, S.B., An, B., Yun, S.T., Lee, S.H. and Choi, J.W. (2017), "Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam", Chemosphere, 166, 203-211. https://doi.org/10.1016/j.chemosphere.2016.09.093.   DOI
4 Ji, Z.Y., Chen, Q.B., Yuan, J.S., Liu, J., Zhao, Y.Y. and Feng, W.X. (2017), "Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis", Sep. Purif. Technol. 172, 168-177. https://doi.org/10.1016/j.seppur.2016.08.006.   DOI
5 Jia, Y.X., Li, F.J., Chen, X. and Wang, M. (2018), "Model analysis on electrodialysis for inorganic acid recovery and its experimental validation", Sep. Purif. Technol., 190, 261-267. https://doi.org/10.1016/j.seppur.2017.08.067.   DOI
6 Koutsou, C.P., Yiantsios, S.G. and Karabelas, A.J. (2007), "Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics", J. Membr. Sci., 291(1-2), 53-69. https://doi.org/10.1016/j.memsci.2006.12.032.   DOI
7 Zhang, Y.H., Liu, F.Q., Zhu, C.Q., Zhang, X.P., Wei, M.M., Wang, F.H., Ling, C. and Li, A.M. (2017). "Multifold enhanced synergistic removal of nickel and phosphate by a (N, Fe)-dual-functional bio-sorbent: Mechanism and application", J. Hazard. Mater., 329, 290-298. https://doi.org/10.1016/j.jhazmat.2017.01.054.   DOI
8 La Cerva, M., Gurreri, L., Tedesco, M., Cipollina, A., Ciofalo, M., Tamburini, A. and Micale, G. (2018), "Determination of limiting current density and current efficiency in electrodialysis units", Desalination, 445, 138-148. https://doi.org/10.1016/j.desal. 2018.07.028.   DOI
9 Min, K.J., Kim, J.H., Oh, E.J., Ryu, J.H. and Park, K.Y. (2021b), "Flow velocity and cell pair number effect on current efficiency in plating wastewater treatment through electrodialysis", Environ. Eng. Res., 26(2), 190502. https://doi.org/10.4491/eer.2019.502.   DOI
10 Oh, E., Kim, J., Ryu, J.H., Min, K.J., Shin, H.G. and Park, K.Y. (2020), "Influence of counter anions on metal separation and water transport in electrodialysis treating plating wastewater", Membr. Water Treat., 11(3), 201-206. http://doi.org/10.12989/sem.2020.11.3.201.   DOI
11 Veerman, J., Saakes, M., Metz, S.J. and Harmsen, G.J. (2011), "Reverse electrodialysis: A validated process model for design and optimization", Chem. Eng. J., 166(1), 256-268. https://doi.org/10.1016/j.cej.2010.10.071.   DOI
12 Min, K.J., Choi, S.Y., Jang, D., Lee, J. and Park, K.Y. (2019), "Separation of metals from electroplating wastewater using electrodialysis", Energ. Source Part A, 41(20), 2471-2480. https://doi.org/10.1080/15567036.2019.1568629.   DOI
13 Min, K.J., Kim, J.H. and Park, K.Y. (2021a), "Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment", Sci. Total Environ., 757, 143762. https://doi.org/10.1016/j.scitotenv.2020.143762.   DOI
14 Nebavskaya, K.A., Sarapulova, V.V., Sabbatovskiy, K.G., Sobolev, V.D., Pismenskaya, N.D., Sistat, P., Cretin, M, and Nikonenko, V.V. (2017), "Impact of ion exchange membrane surface charge and hydrophobicity on electroconvection at underlimiting and overlimiting currents" J. Membr. Sci., 523, 36-44. https://doi.org/10.1016/j.memsci.2016.09.038.   DOI
15 Nikonenko, V.V., Pis'menskaya, N.D., Istoshin, A.G., Zabolotskii, V.I. and Shudrenko, A.A. (2007), "Generalization and prognostication of mass exchange characteristics of electrodialyzers operating in overlimiting current regimes with use made of similarity theory and compartmentation method", Russ. J. Electrochem., 43(9), 1069-1081. https://doi.org/10.1134/S102319350709011X.   DOI
16 Malamis, S., Katsou, E., Kosanovic, T. and Haralambous, K.J. (2012), "Combined adsorption and ultrafiltration processes employed for the removal of pollutants from metal plating wastewater", Sep. Sci. Technol., 47(7), 983-996. https://doi.org/10.1080/01496395.2011.645983.   DOI
17 Akbal, F. and Camci, S. (2011), "Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation", Desalination, 269(1-3), 214-222. https://doi.org/10.1016/j.desal.2010.11.001.   DOI
18 Geise, G.M., Curtis, A.J., Hatzell, M.C., Hickner, M.A. and Logan, B.E. (2014), "Salt concentration differences alter membrane resistance in reverse electrodialysis stacks", Environ. Sci. Technol., 1(1), 36-39. https://doi.org/10.1021/ez4000719.   DOI
19 Bernardes, A.M., Rodrigues, M.A.S. and Ferreira J.Z. (2016), Electrodialysis and Water Reuse, (1st Edition), Springer-Verlag, Berlin, Germany.
20 Fu, F. and Wang, Q. (2011), "Removal of heavy metal ions fr om wastewaters: A review", J. Environ. Manage., 92, 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.   DOI
21 Ibanez Mengual, J.A., Valerdi Perez, R. and Carbonell Bejerano, F. (2015), "Characterization of an electrodialytic cell: Automation and process control", Desalin. Water Treat., 56(13), 3654-3664. https://doi.org/10.1080/19443994.2014.991947.   DOI
22 Kanavova, N. and Machuca, L. (2014), "A novel method for limiting current calculation in electrodialysis modules", Period. Polytech. Chem. Eng., 58(2), 125-130. https://doi.org/10.3311/PPch.7145.   DOI
23 Lee, H.J., Strathmann, H. and Moon, S.H. (2006), "Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity", Desalination, 190, 43-50. https://doi.org/10.1016/j.desal.2005.08.004.   DOI
24 Min, K.J., Oh, E.J., Kim, G., Kim, J.H., Ryu, J.H. and Park, K.Y. (2020), "Influence of linear flow velocity and ion concentration on limiting current density during electrodialysis", Desalin. Water Treat., 175, 334-340. https://doi.org/10.5004/dwt.2020.24663.   DOI
25 Galvanin, F., Marchesini, R., Barolo, M., Bezzo, F. and Fidaleo, M. (2016). "Optimal design of experiments for parameter identification in electrodialysis models", Chem. Eng. Res. Des., 105, 107-119. https://doi.org/10.1016/j.cherd.2015.10.048.   DOI
26 Nakayama, A., Sano, Y., Bai, X. and Tado, K. (2017), "A boundary layer analysis for determination of the limiting current density in an electrodialysis desalination", Desalination, 404, 41-49. https://doi.org/10.1016/j.desal.2016.10.013.   DOI
27 O'Connell, D.W., Birkinshaw, C. and O'Dwyer, T.F. (2008), "Heavy metal adsorbents prepared from the modification of cellulose: A review", Bioresource Technol., 99(15), 6709-6724. https://doi.org/10.1016/j.biortech.2008.01.036.   DOI
28 Scarazzato, T., Buzzi, D.C., Bernardes, A.M., Tenorio, J.A.S. and Espinosa, D.C.R. (2015), "Current-voltage curves for treating effluent containing HEDP: Determination of the limiting current", Braz. J. Chem. Eng., 32(4), 831-836. https://doi.org/10.1590/0104-6632.20150324s00003511.   DOI
29 Tedesco, M., Cipollina, A., Tamburini, A., van Baak, W. and Micale, G. (2012), "Modelling the Reverse ElectroDialysis process with seawater and concentrated brines", Desalin. Water Treat., 49(1), 404-424. https://doi.org/10.1080/19443994.2012.699355.   DOI
30 Wang, X., Nie, Y., Zhang, X., Zhang, S. and Li, J. (2012), "Recovery of ionic liquids from dilute aqueous solutions by electrodialysis", Desalination, 285, 205-212. https://doi.org/10.1016/j.desal. 2011.10.003.   DOI
31 Gherasim, C.V., Krivcik, J. and Mikulasek. P. (2014), "Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions", Chem. Eng. J., 256(15), 324-334. https://doi.org/10.1016/j.cej.2014.06.094Get.   DOI
32 Gurreri, L., Tamburini, A., Cipollina, A. and Micale, G. (2012), "CFD analysis of the fluid flow behavior in a reverse electrodialysis stack", Desalin. Water Treat., 48(1), 390-403. https://doi.org/10.1080/19443994.2012.705966.   DOI
33 Strathmann, H. (2010), "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264(3), 268-288. https://doi.org/10.1016/j.desal.2010.04.069.   DOI
34 Pismenskaya, N.D., Nikonenko, V.V., Melnik, N.A., Shevtsova, K.A., Belova, E.I., Pourcelly, G., Cot, D., Dammak, L. and Larchet, C. (2012), "Evolution with time of hydrophobicityand microrelief of a cation-exchange membrane surface and its impact on over-limiting mass transfer", J. Phys. Chem. B, 116, 2145-2161. https://doi.org/10.1021/jp2101896.   DOI
35 Silva, V., Poiesz, E. and Van der Heijden, P. (2013), "Industrial wastewater desalination using electrodialysis: Evaluation and plant design", J. Appl. Electrochem., 43(11), 1057-1067. https://doi.org/10.1007/s10800-013-0551-4.   DOI
36 Van der Bruggen, B., Koninckx, A. and Vandecasteele. C. (2004), "Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration", Water Res., 38(5), 1347-1353. https://doi.org/10.1016/j.watres.2003.11.008.   DOI
37 Zhang, Y., Paepen, S., Pinoy, L., Meesschaert, B. and Van der Bruggen, B. (2012), "Selectrodialysis: Fractionation of divalent ions from monovalent ions in a novel electrodialysis stack", Sep. Purif. Technol., 88, 191-201. https://doi.org/10.1016/j.seppur.2011.12.017.   DOI