Browse > Article
http://dx.doi.org/10.12989/mwt.2021.12.3.125

Treatment of highly polluted grey waters using Fenton, UV/H2O2 and UV/TiO2 processes  

Heydari, Fariba (Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University)
Osfouri, Shahriar (Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University)
Abbasi, Mohsen (Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University)
Dianat, Mohammad Javad (Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University)
Khodaveisi, Javad (Water and Wastewater Company of Bushehr Province)
Publication Information
Membrane and Water Treatment / v.12, no.3, 2021 , pp. 125-132 More about this Journal
Abstract
Household or office wastewater consists of two parts of faecal and non-faecal wastewater. Non-faecal section, which accounts for more than 60% of household wastewater, is known as grey water. Treating this part of sewage and using it in various areas can greatly reduce the consumption of potable water. In this research, three methods of advanced oxidation processes including Fenton, UV/H2O2, and UV/TiO2 were investigated for treatment of two grey water sourced from Shif Island and Persian Gulf University restaurant in Bushehr province of Iran. These grey waters were highly polluted with COD content of 600 mg/L and 1400 mg/L, respectively. The efficiency of each process was determined by measuring the COD removal rate. Results showed that at optimum reaction conditions, the COD removal efficiency of the UV/H2O2 process was the best, compared to the other two processes. The COD removal efficiency of UV/H2O2 process at pH = 3 and H2O2 = 1500 and 750 mg/L for grey water of the Shif Island and Persian Gulf University restaurant were 88% and 90%, respectively. Therefore, the treated gray waters can be reused economically.
Keywords
grey water; Fenton process; $UV/H_2O_2$ process; $UV/TiO_2$ process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ghaitidak, D.M. and Yadav, K.D. (2013), "Characteristics and treatment of greywater-a review", Environ. Sci. Poll. Res., 20(5), 2795-2809. https://doi.org/10.1007/s11356-013-1533-0.   DOI
2 Harimurti, S., Dutta, B.K., Ariff, I.F.B., Chakrabarti, S. and Vione, D. (2010), "Degradation of monoethanolamine in aqueous solution by Fenton's reagent with biological post-treatment", Water Air Soil Poll., 211(1-4), 273-286. https://doi.org/10.1007/s11270-009-0298-z.   DOI
3 Hassanshahi, N. and Karimi-Jashni, A. (2018), "Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water", Ecotox. Environ. Safe., 161, 683-690. https://doi.org/10.1016/j.ecoenv.2018.06.039.   DOI
4 Kang, J., Lu, L., Zhan, W., Li, B., Li, D., Ren, Y. and Liu, D. (2011), "Photocatalytic pretreatment of oily wastewater from the restaurant by a vacuum ultraviolet/TiO2 system", J. Hazard. Mater., 186(1), 849-854. https://doi.org/10.1016/j.jhazmat.2010.11.075.   DOI
5 Al-Jayyousi, O.R. (2003), "Greywater reuse: Towards sustainable water management", Desalination, 156(1-3), 181-192. https://doi.org/10.1016/S0011-9164(03)00340-0.   DOI
6 Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S.A., Liu, S., Memon, F.A. and Jefferson, B. (2008), "Chemical solutions for greywater recycling", Chemosphere, 71(1), 147-155. https://doi.org/10.1016/j.chemosphere.2007.10.046.   DOI
7 Chanakya, H. and Khuntia, H.K. (2014), "Treatment of gray water using anaerobic biofilms created on synthetic and natural fibers", Process. Saf. Environ., 92(2), 186-92. https://doi.org/10.1016/j.psep.2012.12.004.   DOI
8 Babuponnusami, A. and Muthukumar, K. (2014), "A review on Fenton and improvements to the Fenton process for wastewater treatment", J. Environ. Chem. Eng., 2(1), 557-572. https://doi.org/10.1016/j.jece.2013.10.011.   DOI
9 Khan, M.I., Wu, L., Mondal, A.N., Yao, Z., Ge, L. and Xu, T. (2016), "Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium", Membr. Water Treat., 7(1), 23-38. http://doi.org/10.12989/mwt.2016.7.1.023.   DOI
10 Katukiza, A., Ronteltap, M., Niwagaba, C., Kansiime, F. and Lens, P. (2014), "Grey water treatment in urban slums by a filtration system: Optimisation of the filtration medium", J. Environ. Manage., 146, 131-41. https://doi.org/10.1016/j.jenvman.2014.07.033.   DOI
11 Kumar, J.E., Mulai, T., Kharmawphlang, W., Sharan, R.N., and Sahoo, M.K. (2020), "Decolourisation, mineralisation and detoxification of mixture of azo dyes using Fenton and Fenton-type advanced oxidation processes", Chem. Pap., 74(9), 3145-3159. https://doi.org/10.1007/s11696-020-01147-9.   DOI
12 Leal, L.H., Soeter, A., Kools, S., Kraak, M., Parsons, J., Temmink, H., Zeeman, G. and Buisman, C. (2012), "Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius", Water Res., 46(4), 1038-1044. https://doi.org/10.1016/j.watres.2011.11.079.   DOI
13 Edwin, G.A., Gopalsamy, P. and Muthu, N. (2014), "Characterization of domestic gray water from point source to determine the potential for urban residential reuse: A short review", Appl. Water Sci., 4(1), 39-49. https://doi.org/10.1007/s13201-013-0128-8.   DOI
14 Rivas, F.J., Beltran, F.J., Frades, J. and Buxeda, P. (2001), "Oxidation of p-hydroxybenzoic acid by Fenton's reagent", Water Res., 35(2), 387-396. https://doi.org/10.1016/S0043-1354(00)00285-2.   DOI
15 Prajapati, B., Jensen, M., Jorgensen, N. and Petersen, N. (2019), "Grey water treatment in stacked multi-layer reactors with passive aeration and particle trapping", Water Res., 161, 181-190. https://doi.org/10.1016/j.watres.2019.05.096.   DOI
16 Wang, Q., Liu, S. and Gao, H. (2019), "Treatment of hydroxyquinone-containing wastewater using precipitation method with barium salt", Water Sci. Eng., 12(1), 55-61. https://doi.org/10.1016/j.wse.2019.03.003.   DOI
17 Hernandez-Leal, L., Temmink, H., Zeeman, G., Buisman, C.J.N., (2011), "Removal of micropollutants from aerobically treated grey water via ozone and activated carbon", Water Res. 45(9), 2887-2896. https://doi.org/10.1016/j.watres.2011.03.009.   DOI
18 Salazar, R. and Ureta-Zanartu, M.S. (2012), "Mineralization of triadimefon fungicide in water by electro-fenton and photo electro-fenton", Water Air Soil Poll., 223(7), 4199-4207. https://doi.org/10.1007/s11270-012-1184-7.   DOI
19 Sanchez, M., Rivero, M. and Ortiz, I. (2010), "Photocatalytic oxidation of grey water over titanium dioxide suspensions", Desalination, 262(1-3), 141-6. https://doi.org/10.1016/j.desal.2010.05.060.   DOI
20 Shamabadi, N., Bakhtiari, H., Kochakian, N. and Farahani, M. (2015), "The investigation and designing of an onsite grey water treatment systems at Hazrat-e-Masoumeh University, Qom, Iran", Energy Proc., 74, 1337-1346. https://doi.org/10.1016/j.egypro.2015.07.780.   DOI
21 Sostar-Turk, S., Petrinic, I. and Simonic, M. (2005), "Laundry wastewater treatment using coagulation and membrane filtration", Resour. Conserv. Recy., 44(2), 185-196. https://doi.org/10.1016/j.resconrec.2004.11.002.   DOI
22 Boguniewicz-Zablocka, J., Klosok-Bazan, I., Naddeo, V. and Mozejko, C. A. (2019), "Cost-effective removal of COD in the pre-treatment of wastewater from the paper industry", Water Sci. Technol., 81(7), 1345-1353. https://doi.org/10.2166/wst.2019.328.   DOI
23 Tony, M.A., Parker, H.L. and Clark, J.H. (2016), "Treatment of laundrette wastewater using Starbon and Fenton's reagent", J. Environ. Sci. Heal. A, 51(11), 974-99. https://doi.org/10.1080/10934529.2016.1191817.   DOI
24 Tsoumachidou, S., Velegraki, T., Antoniadis, A. and Poulios, I. (2017), "Greywater as a sustainable water source: A photocatalytic treatment technology under artificial and solar illumination", J. Environ. Manage., 195, 232-421. https://doi.org/10.1016/j.jenvman.2016.08.025.   DOI
25 Wu, Y., Zhou, S., Ye, X., Zhao, R. and Chen, D. (2011), "Oxidation and coagulation removal of humic acid using Fenton process", Colloid. Surface. A., 379(1-3), 151-156. https://doi.org/10.1016/j.colsurfa.2010.11.057.   DOI
26 Yonar, T., Kestioglu, K. and Azbar, N. (2006), "Treatability studies on domestic wastewater using UV/H2O2 process", Appl. Catal. B-Environ., 67(3-4), 223-228. https://doi.org/10.1016/j.apcatb.2006.04.022.   DOI
27 Leong, J.Y.C., Chong, M.N. and Poh, P.E. (2018a), "Assessment of greywater quality and performance of a pilot-scale decentralised hybrid rainwater-greywater system", J. Clean. Prod., 172, 81-91. https://doi.org/10.1016/j.jclepro.2017.10.172.   DOI
28 Leong, J.Y.C., Chong, M.N., Poh, P.E., Vieritz, A., Talei, A. and Chow, M.F. (2018b), "Quantification of mains water savings from decentralised rainwater, greywater, and hybrid rainwater-greywater systems in tropical climatic conditions", J. Clean. Prod., 176, 946-958. https://doi.org/10.1016/j.jclepro.2017.12.020.   DOI
29 Li, Z., Gulyas, H., Jahn, M., Gajurel, D. and Otterpohl, R. (2004), "Greywater treatment by constructed wetlands in combination with TiO2-based photocatalytic oxidation for suburban and rural areas without sewer system", Water Sci. Technol., 48(11-12), 101-106. https://doi.org/10.2166/wst.2004.0815.   DOI
30 Behrouzeh, M., Abbasi, M., Osfouri, Sh. and Dianat, M.J. (2020), "Treatment of DMSO and DMAC wastewaters of various industries by employing Fenton process: Performance efficiency and kinetics study", J. Environ. Chem. Eng., 8(1), 103597. https://doi.org/10.1016/j.jece.2019.103597.   DOI
31 Boyjoo, Y., Ang, M. and Pareek, V. (2012), "Photocatalytic treatment of shower water using a pilot scale reactor", Int. J. Photoenergy, https://doi.org/10.1155/2012/578916.   DOI
32 Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988), "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O- in aqueous solution", J. Phys. Chem. Ref. Data, 17(2), 513-886. https://doi.org/10.1063/1.555805.   DOI
33 Munter, R. (2001), "Advanced oxidation processes-current status and prospects", Proc. Estonian Acad. Sci. Chem., 50(2), 59-80. https://doi.org/10.1007/978-1-59745-029-4_14.   DOI
34 Ligaray, M., Kim, M., Shim, J., Park, J. and Cho, K.H. (2019), "Performance evaluation of organic matter adsorption from actual graywater using GAC: Orbitrap", Membr. Water Treat., 10(6), 471-484. https://doi.org/10.12989/ mwt.2019.10.6.471.   DOI
35 Merz, C., Scheumann, R., El Hamouri, B. and Kraume, M. (2007), "Membrane bioreactor technology for the treatment of greywater from a sports and leisure club", Desalination, 215(1-3), 37-43. https://doi.org/10.1016/j.desal.2006.10.026.   DOI
36 Melo, M.O.M., Duarte, J.L.S, Ferro, A.B., Meili, L. and Zanta, C.L.P.S., (2020), "Comparing electrochemical and Fentonbased processes for aquaculture biocide degradation", Water. Air Soil Poll., 231, 79. https://doi.org/10.1007/s11270-020-4454-9.   DOI
37 Muruganandham, M. and Swaminathan, M. (2004), "Photochemical oxidation of reactive azo dye with UV-H2O2 process", Dyes. Pigments, 62(3), 269-275. https://doi.org/10.1016/j.dyepig.2003.12.006.   DOI
38 Cha, M., Kim, S. and Park, C. (2020), "Recent advances and future potential of anaerobic ceramic membrane bioreactors for wastewater treatment: A review", Membr. Water Treat., 11(1), 31-39. https://doi.org/10.12989/mwt.2020.11.1.031.   DOI
39 Chin, W., Roddick, F. and Harris, J. (2009), "Greywater treatment by UVC/H2O2", Water Res., 43(16), 3940-3947. https://doi.org/10.1016/j.watres.2009.06.050.   DOI
40 Chong, M.N., Cho, Y.J., Poh, P.E. and Jin, B. (2015), "Evaluation of Titanium dioxide photocatalytic technology for the treatment of reactive Black 5 dye in synthetic and real greywater effluents", J. Clean. Prod., 89, 196-202. https://doi.org/10.1016/j.jclepro.2014.11.014.   DOI
41 Fang, Z., Zhang, K., Liu, J., Fan, J. and Zhao, Z. (2017), "Fentonlike oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2 nanocomposites as catalysts", Water Sci. Eng., 10(4), 326-333. https://doi.org/10.1016/j.wse.2017.10.005.   DOI
42 Chrispim, M.C. and Nolasco, M.A. (2017), "Greywater treatment using a moving bed biofilm reactor at a university campus in Brazil", J. Clean. Prod., 142, 290-296. https://doi.org/10.1016/j.jclepro.2016.07.162.   DOI
43 Neyens, E. and Baeyens, J. (2003), "A review of classic Fenton's peroxidation as an advanced oxidation technique", J. Hazard. Mater., 98(1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0.   DOI
44 Nolde, E. (2000), "Greywater reuse systems for toilet flushing in multi-storey buildings-over ten years experience in Berlin", Urban Water, 1(4), 275-284. https://doi.org/10.1016/S1462-0758(00)00023-6.   DOI
45 Oh, K.S., Leong, J.Y.C., Poh, P.E., Chong, M.N. and Von Lau, E. (2018), "A review of greywater recycling related issues: Challenges and future prospects in Malaysia", J. Clean. Prod., 171, 17-29. https://doi.org/10.1016/j.jclepro.2017.09.267.   DOI
46 Babuponnusami, A. and Muthukumar, K. (2011), "Degradation of phenol in aqueous solution by fenton, sono-fenton and sono-photo-fenton methods", Clean Soil Air Water, 39(2), 142-147. https://doi.org/10.1002/clen.201000072.   DOI
47 Gaya. U.I. and Abdullah. A.H. (2008), "Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems", J. Photoch. Photobio. C, 9(1), 1-12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003.   DOI