Browse > Article
http://dx.doi.org/10.12989/mwt.2019.10.6.431

Phenol removal by tailor-made polyamide-fly ash composite membrane: Modeling and optimization  

Vandana, Gupta (Department of Chemical Engineering, National Institute of Technology)
Anandkumar, J. (Department of Chemical Engineering, National Institute of Technology)
Publication Information
Membrane and Water Treatment / v.10, no.6, 2019 , pp. 431-440 More about this Journal
Abstract
A novel composite membrane was synthesized using crosslinked polyamide and fly ash ceramic substrate for phenol removal. Glutaraldehyde was used as crosslinker. Characterization shows that synthesized membrane possesses good permeability ($0.184l.m^{-2}.h^{-1}.kPa^{-1}$), MWCO (1.7 kDa), average pore size (1.08 nm) and good chemical stability. RSM was adopted for phenol removal studies. Box-Behnken-Design using quadratic model was chosen for three operating parameters (feed phenol concentration, pH and applied pressure) against two responses (phenol removal, flux). ANOVA shows that model is statistically valid with high coefficient of determination ($R^2$)value for flux (0.9897) and phenol removal (0.9302). The optimum conditions are obtained as pH 2, $46mg.l^{-1}$ (feed phenol concentration) and 483 kPa (applied pressure) with 92.3% phenol removal and $9.2l.m^{-2}.h^{-1}$ flux. Data validation with deviation of 4% confirms the suitability of model. Obtained results reveal that prepared composite membrane can efficiently separate phenol from aqueous solution.
Keywords
ceramic substrate; composite membrane; phenol removal; polyamide 66; RSM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Reinhard, M.R., Goodman, N.L., McCarty, P.L. and Argo, D.G. (1986) "Removing trace organics by reverse osmosis using cellulose acetate and polyamide membranes", J. American Water Works Assoc., 78(4),163-174. https://doi.org/10.1002/j.1551-8833.1986.tb05728.x.   DOI
2 Rosa, M.J. and De-Pinho, M.N. (1997), "Membrane surface characterisation by contact angle measurements using the immersed method", J. Membr. Sci. 131, 167-180. PII S0376-7388(97)00043-4.   DOI
3 Rudra, R., Kumar, V. and Kundu, P.P. (2015), "Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde:effect of crosslink density on the characteristics of PVA membrane used in single chambered microbial fuel cells", RSC adv., 5, 83436-83447. https://doi.org/10.1039/c5ra16068e.   DOI
4 Seres, Z., Maravic, N., Takaci, A., Nikolic, I., Soronja-Simovic, D., Jokic, A. and Hodur, C. (2016) "Treatment of vegetable oil refinery wastewater using alumina ceramic membrane:optimization using response surface methodology", J. Clean. Prod., 112, 3132-3137. http://dx.doi.org/10.1016/j.jclepro.2015.10.070.   DOI
5 Belfer, S., Purinson, Y. and Kedem, O. (1998), "Surface modification of commercial polyamide reverse osmosis membranes by radical grafting: An ATR-FTIR study", Acta. Polym., 49, 574-582. https://doi.org/10.1002/(SICI)1521-4044(199810)49:10/11<574::AID-APOL57 4>3.0.CO;2-0.   DOI
6 Boubakri, A., Hafiane, A. and Bouguecha, S.A.T. (2014), "Application of response surface methodology for modeling and optimization of membrane distillation desalination process", J. Ind. Eng. Chem., 20, 3163-3169. http://dx.doi.org/10.1016/j.jiec.2013.11.060.   DOI
7 Charles, J., Ramkumaar, G.R., Szhagiri, S. and Gunasekaran, S. (2009), "FTIR and Thermal Studies on Nylon-66 and 30% Glass Fibre Reinforced Nylon-66", e-J chem. coden ecjhao, 6(1), 23-33. http://dx.doi.org/10.1155/2009/909 017.
8 Sridhar, S., Smitha, B. and Reddy, A.A. (2006), "Separation of 2-butanol-water mixtures by pervaporation through PVA-NYL 66 blend membranes", Colloids and Surfaces A: Physicochem. Eng. Aspects, 280, 95-102. https://doi.org/10.1007/s10853-007-1813-5.   DOI
9 Vasanth, D., Pugalzhenthi, G. and Upaluri, R. (2013), "Crossflow microfiltration of Oil-in-water emulsion using low coast ceramic membrane", Desal., 320, 86-95. https://doi.org/10.1016/j.desal.2013.04.018.   DOI
10 Wei, J., Qiu, C., Tang, C.Y., Wang, R. and Fane, A.G. (2011), "Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes". J. Membr. Sci., 372, 292-302. https://doi.org/10.1016/j.memsci.2011.02.013.   DOI
11 Yanilmaz, M., Zhu, J., Lu, Y., Ge, Y. and Zhang, X. (2017) "Highstrength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries", J. Mater. Sci., 52(9), https://doi.org/10.1007/s10853-017-0764-8.
12 Hanafi, Y., Loulergue, P., Ababou-Girard, S., Meriadec, C., Rabiller-baudry, M., Baddari, K. and Szymczyk, A. (2016), "Electrokinetic analysis of PES/PVP membranes aged by sodium hypochlorite solutions at different pH", J. Membr. Sci., 501, 24-32. http://dx.doi.org/10.1016/j.mem sci.2015.11.041.   DOI
13 Coates, J. (2000) Interpretation of Infrared Spectra, A Practical Approach Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.) John Wiley and Sons Ltd, Chichester, USA. 10815-10837.
14 Djamila, G., Djamel, A. and Nedjla, A. (2016), "Selective adsorption of 2-nitrophenol, phenol, hydroquinone on Poly (Vinyl Alcohol) crosslinked glutaraldehyde-${\beta}$-cyclodextrin polymer membrane", J. Polym. Biopolym. Phys. Chem., 4(1), 7-15. https://doi.org/10.12691/jpbpc-4-1-2.
15 Gonzalez-Munoz, M.J., Luque, S., Alvarez, J.R. and Coca, J. (2003), "Recovery of phenol from aqueous solutions using hollow fibre contactors", J. Membr. Sci., 213, 181-193. https://doi.org/10.1016/S0376-7388(02)00526-4.   DOI
16 Hemmati, M., Nazari, N., Hemmati, A. and Shirazian, S. (2015) "Phenol removal from wastewater by means of nanoporous membrane contactors", J. Ind. Eng. Chem., 21, 1410-1416. http://dx.doi.org/10.1016/j.jiec.2014.06.015.   DOI
17 Zagklis, D.P., Vavouraki, A.I., Kornaros, M.E. and Paraskeva, M.E. (2015), "Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption", J. Hazard. Mater., 285, 69-76. http://dx.doi.org/10.1016/j.jhazmat.2014.11.038.   DOI
18 Zeng, G.M., Xu, K., Huang, J.H., Li, X., Fang, Y.Y. and Qu, Y.H. (2008), "Micellar enhanced ultrafiltration of phenol in synthetic waste water using polysulfone spiral membrane", J. Membr. Sci., 310, 149-160. https://doi.org/10.1016/j.memsci.2007.10.046.   DOI
19 Hofman, J.A.M.H., Beerendonk, E.F., Folmer, H.C. and Kruithoff, J.C. (1997) "Removal of pesticides and other micropollutants with celluloseacetate, polyamide and ultra-low pressure reverse osmosis membranes", Desal., 113, 209-214. PII S0011-9164(97)00131-8.   DOI
20 Howe, B. (2010), UL Prospector Dry vs. Conditioned Polyamide Nylon Explained. Prospector. Prospector knowledge center. https://knowledge.ulprospector.com/1489/pe-dry-vs-conditionedpolyamide-nylon.
21 Huang, Z.H., McDonald, W.E., Wright, S.C. and Taylor, A.C. (2002) "Cross linked polyamide", US Patent US 6,399,714 B1. https://patents.google.com/patent/US6399714B1/en.
22 Kanagaraj, P., Nagendran, A., Rana, D., Matsuura, T. and Neelakandan, S. (2015), "Separation of macromolecular proteins and rejection of toxic heavy metal ions by PEI/cSMM blend UF membranes". Int. J. Biol. Macromol., 72, 223-229. http://dx.doi.org/doi:10.1016/j.ijbiomac.201 4.08.018.   DOI
23 Irani, M., Rad, L.R., Pourahmad, H. and Haririan, I. (2015), "Optimization of the combined adsorption/photo-Fenton method for the simultaneous removal of phenol and paracetamol in a binary system", Microporous Mesoporous Mater., 206, 1-7. http://dx.doi.org/10.1016/j.micromeso.2014.12.009.   DOI
24 Jasni, M.J., Sathishkumar, P., Sornambikai, S., Yusoff, A.R.M., Ameen, F., Buang, N.A., Kadir, M.R.A. and Yusop, Z. (2016). "Fabrication, characterization and application of laccase-nylon 6,6/$Fe^{3+}$ composite nanofibrous membrane for 3,30-dimethoxybenzidine detoxification", Bioprocess Biosyst. Eng., 40(2), 191-200, https://dx.doi.org/10. 1007/s00449-016-1686-6.
25 Jiang, H., Qu, Z., Li, Y., Huang, J., Chen, R. and Xing, W. (2016), "One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor", Chem. Eng. J., 284, 724-732. https://doi.org/10.1016/j.cej.2015.09.037.   DOI
26 Kann, Y., Shurgalin, M. and Krishnaswamy, R.K. (2014) "FTIR spectroscopy for analysis of crystallinity of poly(3-hydroxybutyrate-co-4 -hydroxybutyrate) polymers and its utilization in evaluation of aging, orientation and composition", Polym. Test., 40, 218-224. http://dx.doi.org/10.1016/j.polymertesting.2014.09.009.   DOI
27 Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R. (2008), "Polyamide thin-film nanofiltration membranes containing $TiO_2$ nanoparticles", Desal., 219, 48-56. https://doi.org/10.1016/j.desal.2007.06.003.   DOI
28 Kargari, A., Mohammadi, S. (2015), "Evaluation of phenol removal from aqueous solutions by UV, RO, and UV/RO hybrid systems", Desalin. Water. Treat., 54(6), 1-9. http://dx.doi.org/10.1080/19443994.2014.891077.   DOI
29 Khazaali, F., Kargari, A. (2017), "Treatment of Phenolic Wastewaters by a Domestic Low-Pressure Reverse Osmosis System", J. Membr. Sci. Res., 3, 22-28. https://dx.doi.org/10.22079/JMSR.2017.23344.
30 Kumar, V., Kumar, P., Nandy, A. and Kundu, P.P. (2015), "Crosslinked inter penetrating network of sulfonated styrene and sulfonated PVdF-co-HFP as electrolytic membrane in single chambered Microbial Fuel Cell", RSC adv., 5, 30758-30767. https://doi.org/10.1039/C5RA034 11F.   DOI
31 Li, H., Zhang, H., Qin, X. and Sh, W. (2017), "Improved separation and antifouling properties of thin-film composite nanofiltration membrane by the incorporation of cGO", Appl. Surf. Sci., 407, 260-275. http://dx.doi.org/10.1016/j.apsusc.2017.02.204.   DOI
32 Li, Y., Wei, J., Wanga, C. and Wang, W. (2010), "Comparison of phenol removal in synthetic wastewater by NF or RO membranes". Desalin. Water. Treat., 22, 211-219. http://dx.doi.org/10.5004/dwt.2010.1787.   DOI
33 Lin, S., Huang, H., Zeng, Y., Zhang, L. and Hou, L. (2016), "Facile surface modification by aldehydes to enhance chlorine resistance of polyamide thin film composite membranes", J. Membr. Sci., 518, 40-49. http://dx.doi.org/10.1016/j.memsci.2016.06.032.   DOI
34 Al-Obaidi, M.A., Kara-Zaitria, C. and Mujtaba, I.M. (2017), "Removal of phenol from wastewater using spiral-wound reverse osmosis process: Model development based on experiment and simulation", J. Water Process Eng., 18, 20-28. http://dx.doi.org/10.1016/j.jwpe.2017.05.005.   DOI
35 Al-Hobaib, A.S., El Ghoul, J., El Mir, L. (2015), "Synthesis and characterization of ployamide thin film nanocomposite membrane containing ZnO nanoparticle", Membr. Water. Treat., 6(4), 309-321. https://doi.org/10.12989/mwt.2015. 6.4.309.   DOI
36 Liu, Y., Meng, M., Yao, J., Da, Z., Feng, Y., Yan, Y. and Li, C. (2016), "Selective separation of phenol from salicylic acid effluent over molecularly imprinted polystyrene nanospheres composite alumina membranes", Chem. Eng. J., 286, 622-631. https://doi.org/10.1016/j.cej.2015.10.063.   DOI
37 Mazry, C.E., Correc, O. and Colin, X. (2012), "A new kinetic model for predicting polyamide 6-6 hydrolysis and its mechanical embrittlement", J. Polym. Degrad. Stab., 97, 1049-1059. https://hal.archives-ouvertes.fr/hal-01082759.   DOI
38 Mixa, A. and Staudt, C. (2008), "Membrane-based separation of phenol/water mixtures using ionically and covalently crosslinked ethylene-methacrylic acid copolymers", Int. J. Cheme., 2008, 1-12. http://dx.doi.org/10.1155/2008/319 392.
39 Mukherjee, R. and De, S. (2016), "Novel carbon-nanoparticle polysulfone hollow fiber mixed matrix ultrafiltration membrane:adsorptive removal of benzene, phenol and toluene from aqueous solution", Sep. Purif. Technol, 157, 229-240. http://dx.doi.org/10.1016/j.seppur.2015.11.015.   DOI
40 Arsuaga, J.M., Sotto, A., Lopez-Munoz, M.J., Braeken, L. (2011), "Influence of type and position of functional groups of phenolic compounds on NF/RO performance", J. Membr. Sci., 372, 380-386. https://doi.org/10.1016/j. memsci.2011.02.020.   DOI
41 Basu, S. and Balakrishnan, M. (2017), "Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams", Sep. Purif. Technol., 179, 118-125. http://dx.doi.org/10.1016/j.seppur.2017.01.061.   DOI
42 Porubska, M., Szollos, O., Konova, A., Janigova, I., Jaskova, M., Jomova, K. and Chodak, I. (2012) "FTIR spectroscopy study of polyamide-6 irradiated by electron and proton beams", Polym. Degrad. Stability, 97, 523-531. https://dx.doi.org/10.1016/j.polymdegradstab.2012.01.017.   DOI
43 Murthy, Z.V.P. and Gupta, S.K. (1998) "Thin film composite polyamide membrane parameters estimation for phenol-water system by reverse osmosis", Sep. Sci. Technol., 33(16), 2541-2557. http://dx.doi.org/10.1080/014963998 08545318.   DOI
44 Nandi, B.K., Uppaluri, R. and Purkait, M.K. (2009), "Effect of dip coating parameters on the morphology and transport properties of cellulose acetate-ceramic composite membrane", J. Membr. Sci., 330, 246-258. https://doi.org/10.1016/j.memsci.2008.12.071.   DOI