Browse > Article
http://dx.doi.org/10.12989/mwt.2019.10.4.277

Autopsy of Nanofiltration membrane of a decentralized demineralization plant  

El-ghzizel, Soufian (Laboratory of Separation Processes, Department of Chemistry, Faculty of Sciences, Ibn Tofail University)
Jalte, Hicham (Laboratory of Separation Processes, Department of Chemistry, Faculty of Sciences, Ibn Tofail University)
Zeggar, Hajar (Laboratory of Separation Processes, Department of Chemistry, Faculty of Sciences, Ibn Tofail University)
Zait, Mohamed (Laboratory of Separation Processes, Department of Chemistry, Faculty of Sciences, Ibn Tofail University)
Belhamidi, Sakina (Laboratory of Separation Processes, Department of Chemistry, Faculty of Sciences, Ibn Tofail University)
Tiyal, Fathallah (Laboratory of Separation Processes, Department of Chemistry, Faculty of Sciences, Ibn Tofail University)
Hafsi, Mahmoud (International Institute for Water and Sanitation, National Office of Electricity and potable Water ONEE-IEA)
Taky, Mohamed (Laboratory of Separation Processes, Department of Chemistry, Faculty of Sciences, Ibn Tofail University)
Elmidaoui, Azzedine (Laboratory of Separation Processes, Department of Chemistry, Faculty of Sciences, Ibn Tofail University)
Publication Information
Membrane and Water Treatment / v.10, no.4, 2019 , pp. 277-286 More about this Journal
Abstract
In 2014, the first demineralization plant, using nanofiltration (NF) membrane coupled with renewable energies was realized at Al Annouar high school of Sidi Taibi, Kenitra, Morocco. This project has revealed difficulties related to the membrane performances loss (pressure increase, flux decline, poor water quality of the produced water and increase of energy consumption), as consequences of membrane fouling. To solve this problem, an autopsy of the membrane was done in order to determine the nature and origin of the fouling. The samples of membrane and fouling were then analyzed by scanning electron microscopy using a scanning electron microscope (SEM) connected with an energy dispersive X-ray (EDX) detection system and X-ray diffractometer (XRD). Moreover, three cleaning solutions (hydrochloric acid, nitric acid and sulfuric acid) were tested and assessed in a single cleaning step to find the suitable one for the fouled membrane to regain its initial permeability and performances. The analysis of the experimental results showed that the fouling layer is mainly composed of calcium carbonate (inorganic fouling). Results showed also that the permeability is improved by the hydrochloric acid cleaning (pH=3) with a cleaning efficiency of 93%. Cleaning efficiency did not exceed 75 % with nitric acid (pH=3) and 40 % with sulfuric acid (pH=3).
Keywords
nanofiltration; desalination plant; fouling; autopsy; demineralization; membrane cleaning;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abid, H. S., Johnson, D. J., Hashaikeh, R. and Hilal, N. (2017), "A review of efforts to reduce membrane fouling by control of feed spacer characteristics", Desalination, 420, 384-402. https://doi.org/10.1016/j.desal.2017.07.019.   DOI
2 Aguiar, A., Andrade, L., Grossi, L., Pires, W. and Amaral, M. (2018), "Acid mine drainage treatment by nanofiltration: A study of membrane fouling, chemical cleaning, and membrane ageing", Separation Purification Technol., 192, 185-195, https://doi.org/10.1016/j.seppur.2017.09.043.   DOI
3 An, y., Wang, Z., Wu Z., Yang, D. and Zhou, Q. (2009), "Characterization of membrane foulants in an anaerobic nonwoven fabric membrane bioreactor for municipal wastewater treatment", Chem. Eng. J, 155(3), 709-715. https://doi.org/10.1016/j.cej.2009.09.003.   DOI
4 Dach, H. (2008), "Comparison of the operations of nanofiltration and reverse osmosis for the selective desalination of brackish water: of the scale of the laboratory to the industrial pilot", Ph.D. Dissertation, Universite d'Angers, France.
5 Drak, A., Glucina, K., Busch, M., Hasson, D., Laine, J.M. and Semiat, R. (2000), "Laboratory technique for predicting the scaling propensity of RO feed waters", Desalination, 132(1-3), 233-242. https://doi.org/10.1016/S0011-9164(00)00154-5.   DOI
6 El Harrak, N., Elazhar, F., Belhamidi, S., Elazhar, M., Touir, J., and Elmidaoui, A. (2015), "Comparaison des performances des deux procedes membranaires: la Nanofiltration et de l'Osmose inverse dans le Dessalement des eaux saumatres (Performances comparison of two membranes processes: Nanofiltration and Reverse Osmosis in brackish water Desalination)", J. Mater. Environ. Sci, 6(2), 383-390
7 Epsztein, R., Cheng, W., Shaulskya, E., Dizge, N. and Elimelech, M. (2018), "Elucidating the mechanisms underlying the difference between chloride and nitrate rejection in Nanofiltration", J. Membrane Sci., 548(15), 694-701. https://doi.org/10.1016/j.memsci.2017.10.049.   DOI
8 Shirazi, S., Lin, C. and Chen, D. (2010), "Inorganic fouling of pressure-driven membrane processes-A critical review", Desalination, 250, 236-248. https://doi.org/10.1016/j.desal.2009.02.056.   DOI
9 Simon, A.R., Price, W.E. and Nghiem, L.D. (2012), "Effects of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs)", Separation Purification Technol., 88, 208-215. https://doi.org/10.1016/j.seppur.2011.12.009.   DOI
10 Simon, A., Price, W.E. and Nghiem, L.D. (2013), "Impact of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs): the role of cleaning temperature", J. Taiwan Inst. Chem. Eng., 44(5), 713-723. https://doi.org/10.1016/j.jtice.2013.01.030.   DOI
11 Sohrabi, M.R., Madaeni, S.S., Khosravi, M. and Ghaedi. A.M. (2011), "Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions", Desalination, 267(1), 93-100. https://doi.org/10.1016/j.desal.2010.09.011.   DOI
12 Song, Y., Li, T., Zhou, J., Li, Z. and Gao, C. (2016), "Analysis of nanofiltration membrane performance during softening process of simulated brackish groundwater", Desalination, 399, 159-164. https://doi.org/10.1016/j.desal.2016.09.004.   DOI
13 Tarek, S.J., Ahmad, M.S., Eman, S.M., Ahmed, A.K. and Azza, M.A.E.A. (2018), "Application of nanofiltration membrane for the River Nile water treatment in Egypt: Case study", Membr. Water Treat., 9(4), 233-243. http://dx.doi.org/10.12989/mwt.2018.9.4.233.   DOI
14 Goh, P.S., Lau, W.J., Othman, M.H.D. and Ismail, A.F. (2018), "Membrane fouling in desalination and its mitigation strategies", Desalination, 425, 130-155. https://doi.org/10.1016/j.desal.2017.10.018.   DOI
15 Tran, T., Bolto, B., Gray, S., Hoang, M. and Eddy, O. (2007), "An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant", Water Res., 41, 3915-3923. https://doi.org/10.1016/j.watres.2007.06.008.   DOI
16 Tzotzi, C., Pahiadaki, T., Yiantsios, S.G., Karabelas, A.J. and Andritsos, N.A. (2007), "Study of CaCO3 scale formation and inhibition in RO and NF membrane processes", J. Membr. Sci, 296, 171-184. https://doi.org/10.1016/j.memsci.2007.03.031.   DOI
17 Fang, L.F., Zhou, M.Y., Cheng, L., Zhu, B.K., Matsuyama, H. and Zhao, S. (2019), "Positively charged Nanofiltration membrane based on cross-linked polyvinyl chloride copolymer", J. Membr. Sci., 527, 28-37. https://doi.org/10.1016/j.memsci.2018.10.054.
18 Farhat, S., Kamel, F., Jedoui, Y. and Kallel, M. (2012), "The relation between the RO fouling membrane and the feed water quality and the pretreatment in Djerba Island plant", Desalination, 286, 412-416. https://doi.org/10.1016/j.desal.2011.11.058.   DOI
19 Fernandez-Sempere, J., Ruiz-Bevia, F., Garcia-Algado, P. and Salcedo-Diaz, R. (2010), "Experimental study of concentration polarization in a crossflow reverse osmosis system using Digital Holographic Interferometry", Desalination, 257(1-3), 36-45. https://doi.org/10.1016/j.desal.2010.03.010.   DOI
20 Gorzalski, A.S., Donley, C. and Coronell, O. (2016), "Elemental composition of membrane foulant layers using EDS, XPS, and RBS", J. Membr. Sci., 522(15), 31-44. https://doi.org/10.1016/j.memsci.2016.08.055.   DOI
21 Hamrouni, B. and Dhahbi, M. (2001), "Analytical aspects of silica in saline water - Application to desalination of brackish waters", Desalination, 136, 225-232. https://doi.org/10.1016/S0011-9164(01)00185-0.   DOI
22 Herrera-Robledo, M., Cid-Leon, D.M., Morgan-Sagastume, J.M. and Noyola, A. (2011), "Biofouling in an anaerobic membrane bioreactor treating municipal sewage", Sep. Purif. Technol, 81(1), 49-55. https://doi.org/10.1016/j.seppur.2011.06.041.   DOI
23 Epsztein, R., Nir, O., Lahav, Ori. and Green, M. (2015), "Selective nitrate removal from groundwater using a hybrid nanofiltration? reverse osmosis filtration scheme", Chem. Eng. J., 279, 372-378. https://doi.org/10.1016/j.cej.2015.05.010.   DOI
24 Vanysacker, L., Bernshtein, R. and Vankelecom, I.F.J. (2014), "Effect of chemical cleaning and membrane aging on membrane biofouling using model organisms with increasing complexity", J. Memb. Sci, 457, 19-28. https://doi.org/10.1016/j.memsci.2014.01.015.   DOI
25 World Health Organization (2008), Guidelines for Drinking-Water Quality: Incorporating 1st and 2nd Addenda, Vol. 1, Recommendations, 375-492.
26 Xie, R.J., Gomez, M.J., Xing, Y.J. and Klose, P.S. (2004), "Fouling assessment in a municipal water reclamation reverse osmosis system as related to concentration factor", J. Environ. Eng. Sci., 3, 61-72. https://doi.org/10.1139/s03-054.   DOI
27 Zheng, L., Yu, D., Wang, G., Yue, Z., Zhang, C., Wang, Y., Zhang, J., Wang, J., Liang, G. and Wei, Y. (2018), "Characteristics and formation mechanism of membrane fouling in a full scale RO wastewater reclamation process: Membrane autopsy and fouling characterization", J. Membr. Sci., 563(1), 843-856. https://doi.org/10.1016/j.memsci.2018.06.043.   DOI
28 Karime, M., Bouguechab, S. and Hamrounia, B. (2008), "RO membrane autopsy of Zarzis brackish water desalination plant", Desalination, 220, 258-266. https://doi.org/10.1016/j.desal.2007.02.040.   DOI
29 Jadhav, S.V., Marathe, K.V. and Rathod, V.K. (2016), "A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach", J. Water Process Eng., 12, 153-167. https://doi.org/10.1016/j.jwpe.2016.04.008.
30 Jiang, S., Li, Y. and Ladewig, B.P. (2017) "A review of reverse osmosis membrane fouling and control strategies", Sci. Total Environ., 595, 567-583. https://doi.org/10.1016/j.scitotenv.2017.03.235.   DOI
31 Kimura, K., Hane, Y., Watanab, Y., Amy, G. and Ohkuma, N. (2004), "Irreversible membrane fouling during ultrafiltration of surface water", Water Res., 38(14-15), 3431-3441. https://doi.org/10.1016/j.watres.2004.05.007.   DOI
32 Koyuncu, I. and Wiesner, M.R. (2007), "Morphological variations of precipitated salts on NF and RO membranes", Environ. Eng. Sci. 24, 602-614. https://doi.org/10.1016/j.watres.2004.05.007.   DOI
33 Lee, D.J., Lin, J.C.T. and Huang, C. (2010), "Membrane fouling mitigation: Membrane cleaning", Separation Science and Technology, 45, 858-872. https://doi.org/10.1080/01496391003666940.   DOI
34 Pontie, M., Dach, H., Leparc, J., Hafsi, M. and Lhassani, A. (2008), "Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification", Desalination, 221, 174-191. https://doi.org/10.1016/j.desal.2007.01.075.   DOI
35 Leo, C.P., Yeo, K.L., Lease, Y. and Derek, C.J.C. (2016), "Fouling evaluation on nanofiltration for concentrating phenolic and flavonoid compounds in propolis extract", Membr. Water Treat., 7(4), 327-339. https://doi.org/10.12989/mwt.2016.7.4.327.   DOI
36 Lin, C. J., Shirazi, S. and Rao, P. (2005), "Mechanistic model for CaSO4 fouling on Nanofiltration membrane", J. Environ. Eng., 131(10), 1387-1392.   DOI
37 Lu, J.Y., Du, X. and Lipscomb, G. (2009), "Cleaning membranes with focused ultrasound beams for drinking water treatment", Proceedings of IEEE International Ultrasonics Symposium Proceedings, 1195-1198, Roma, Italy, September.
38 Madaeni, S.S., Mohamamdi, T. and Moghadam, M.K. (2001), "Chemical cleaning of reverse osmosis membranes", Desalination, 134 (1-3), 77-82. https://doi.org/10.1016/S0011-9164(01)00117-5.   DOI
39 Mohammadi, T., Madaeni, S.S. and Moghadam, M.K. (2002), "Investigation of membrane fouling", Desalination, 153 (1-3), 155-160. https://doi.org/10.1016/S0011-9164(02)01118-9.   DOI
40 Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N.A. and Hilal, N. (2018), "The use of ultrasound to mitigate membrane fouling in desalination and water treatment", Desalination, 443, 143-164. https://doi.org/10.1016/j.desal.2018.04.007.   DOI
41 Regula, C., Carretier, E., Wyart, Y., Gesan-Guiziou, G., Vincent, A., Boudot, D. and Moulin, P. (2014), "Chemical cleaning/disinfection and ageing of organic UF membranes: A review", Water Res, 56, 325-365. https://doi.org/10.1016/j.watres.2014.02.050.   DOI
42 Salazar-Pelaez, M.L., Morgan-Sagastume, J.M. and Noyola, A. (2017), "Fouling layer characterization and pore-blocking mechanisms in an UF membrane externally coupled to a UASB reactor", Water SA, 43(4), 573-580. http://dx.doi.org/10.4314/wsa.v43i4.05.   DOI
43 Ruiz-Garciaa, A., Melian-Martelb, N. and Mena, V. (2018), "Fouling characterization of RO membranes after 11 years of operation in a brackish water desalination plant", Desalination, 430, 180-185. https://doi.org/10.1016/j.desal.2017.12.046.   DOI
44 Sachit, D. E. and Veenstra J. N. (2017), "Foulant analysis of three RO membranes used in treating simulated brackish water of the Iraqi marshes", Membranes (Basel), 7(2), 23. https://doi.org/10.3390/membranes7020023.   DOI