Browse > Article
http://dx.doi.org/10.12989/mwt.2018.9.4.233

Application of nanofiltration membrane for the River Nile water treatment in Egypt: Case study  

Jamil, Tarek S. (Water Pollution Control Department, National Research Center)
Shaban, Ahmad M. (Water Pollution Control Department, National Research Center)
Mansor, Eman S. (Water Pollution Control Department, National Research Center)
Karim, Ahmed A. (Water Pollution Control Department, National Research Center)
El-Aty, Azza M. Abd (Water Pollution Control Department, National Research Center)
Publication Information
Membrane and Water Treatment / v.9, no.4, 2018 , pp. 233-243 More about this Journal
Abstract
In this manuscript, $35m^3/d$ NF unit was designed and applied for surface water treatment of the River Nile water. Intake of Embaba drinking water treatment plant was selected to install that unit at since; it has the lowest water quality index value through the examined 6 sites in greater Cairo area. The optimized operating conditions were feed and permeate flow, 40 and $7m^3/d$, feed pressure 2.68 bar and flux rate $37.7l/m^2h$. The permeate water was drinkable according to Egyptian Ministerial decree 458/2007 for the tested parameters (physic-chemical, heavy metals, organic, algal, bacteriological and parasitological). Single and double sand filters were used as pretreatment for NF membranes but continuous clogging for sand filters moved us to use UF membrane as pretreatment for NF membrane.
Keywords
River Nile; NF membrane; pretreatment; water; treatment;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Albert, K., Vatai, G., Giorno, L., Koris, A. (2016), "Energy-saving potential of cross-flow membrane emulsification by ceramic tube membrane with inserted cross-section reducers", Membr. Water Treat., 7(3), 175-191.   DOI
2 Ali, O.A., Jamil, T.S. (2008), "Evaluation for treatment steps in Mostorod drinking water treatment plant", Bull. Nat. Res. Cent. Egypt, 33, 93-108.
3 APHA (2012), Standard Methods for Examination of Water and Wastewater, 22nd ed., American Water Works Association, Denver, CO, U.S.A.
4 Chen, S.S., Taylor, J.S., Mulford, L.A., Norris, C.D. (2004), "Influences of molecular weight, molecular size, flux and recovery for aromatic pesticide removal by nanofiltration membranes", Desalination, 160(2), 103-111.   DOI
5 Choi, J.H., Dockko, S., Fukushi, K., Yamamoto, K. (2002), "A novel application of a submerged nanofiltration membrane bioreactor (NF-MBR) for wastewater treatment", Desalination, 146(1-3), 413-420.   DOI
6 Costa, A.R., de Pinho, M.N. (2006), "Performance and cost estimation of nanofiltration for surface water treatment in drinking water production", Desalination, 196(1-3), 55-65.   DOI
7 Fang, W., Shi, L., Wang, R. (2013), "Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening", J. Membr. Sci. 430, 129-139.   DOI
8 Fang, W., Shi, L., Wang, R. (2014), "Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability", J. Membr. Sci. 468, 52-61.   DOI
9 Galanakis, C.M., Fountoulis, G., Gekas, V. (2012), "Nanofiltration of brackish groundwater by using a polypiperazine membrane", Desalination, 286, 277-284.   DOI
10 Garcia, N., Moreno, J., Cartmell, E., Rodriguez-Roda, I., Judd, S. (2013), "The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse", Env. Tech., 34(24), 3183-3189.   DOI
11 Ghizellaoui, S., Chibani, A., Chizellaoui, S. (2005), "Use of nonofiltration for partial softening of very hard water", Desalination, 179(1-3), 315-322.   DOI
12 Jamil, T.S., Ali, O.A. (2009), "The effect of industrial waste of oil companies on the distribution of organic pollutants in Ismailia Canal water", Bull. Nat. Res. Cent. Egypt, 32(6), 574-559.
13 Jamil, T.S., Dijkstra, I., Sayed, S. (2013), "Usage of permeate water for treated domestic wastewater by direct capillary nanofiltration membrane in agriculture reuse", Desalination Water Treat., 51(13-15), 2584-2591.   DOI
14 Jamil, T.S., Souaya, E.R., Ashmawy, N.H. (2014), "Monitoring of water quality for the River Nile in greater Cairo area", J. Acad. Res. Part A, 6, 275-285.
15 Kheriji, J., Tabassi, D., Bejaoui, I., Hamrouni, B. (2016), "Boron removal from model water by RO and NF membranes characterized using S-K model", Membr. Water Treat., 7(3), 193-207.   DOI
16 Maddah, H.A., Chogle, A.M. (2015), "Applicability of low pressure membranes for wastewater treatment with cost study analyses", Membr. Water Treat., 6(6), 477-488.   DOI
17 Lazar, L., Bandrabur, B., Fărmus, R.E.T., Drobota, M., Gutt, G. (2014), "FTIR analysis of ion exchange resins with application in permanent hard water softening", Environ. Eng. Manag. J., 13(9), 2145-2152.   DOI
18 Lee, C.O., Howe, K.J., Thomson, B.M. (2009), "State of knowledge of pharmaceutical, personal care product and endocrine disrupting compound removal during municipal wastewater treatment", New Mexico Environment Department, 1-64.
19 Lehi, A.Y., Mousavirad, S.J., Akbari, A. (2017), "Pre-treatment of textile wastewaters containing Chrysophenine using hybrid membranes", Membr. Water Treat., 8(1), 89-112.   DOI
20 Manttari, M., Pihlajamaki, A., Nystrom, M. (2006), "Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH", J. Membr. Sci., 280(1-2), 311-332.   DOI
21 Martinez-Huitle, C.A., Brillas, E. (2008), "Electrochemical alternatives for drinking water disinfection", Angew. Chem. Ed., 47(11), 1998-2005.   DOI
22 Megahed, A.M., Dahshan, H., Abd-Elall, A.M.M., Mahmoud, H.A. (2015), "Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt", Sci. World J., 2015, 1-7.
23 Mohammad, A.W., Teowa, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L., Hilal, N. (2015), "Nanofiltration membranes review: Recent advances and future prospects", Desalination, 356, 226-254.   DOI
24 Rajesha, B.J., Chandan, H.R., Sunil, K., Padaki, M., Balakrishna, G.R. (2016), "Removal of BP-3 endocrine disrupting chemical (EDC) using cellulose acetate and ZnOnano particles mixed matrix membranes", Membr. Water Treat., 7(6), 507-520.   DOI
25 Nghiem, L.D., Schafer, A.I., Elimelech, M. (2004), "Removal of natural hormones by nanofiltration membranes: Measurements, modeling and mechanisms", Environ. Sci. Technol. 38(6), 1888-1896.   DOI
26 Nghiem, L.D., Fujioka, T. (2016), "Removal of emerging contaminants for water reuse by membrane technology", Emerging Membrane Technology for Sustainable Water Treatment, Elsevier, Amsterdam, 217-247.
27 Oatley-Radcliffe, D.L., Williams, S.R., Barrow, M.S., Williams, P.M. (2014), "Critical appraisal of current nanofiltration modelling strategies for seawater desalination and further insights on dielectric exclusion", Desalination, 343, 154-161.   DOI
28 Orecki, A., Tomaszewska, M., Karakulski, K., Morawski, A.W. (2004), "Surface water treatment by the nanofiltration method", Desalination, 162, 47-54.   DOI
29 Radjenovic, J., Petrovic, M., Ventura, F., Barcelo, D. (2008), "Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment", Water Res. 42(14), 3601-3610.   DOI
30 Razavi, S.M.R., Miri, T., Barati, A., Nazemian, M., Sepasi, M. (2015), "Industrial wastewater treatment by using of membrane", Membr. Water Treat., 6(6), 489-499.   DOI
31 Singh, R. and Hankins, N.P. (2016), "Introduction to membrane processes for water treatment", Emerging Membrane Technology for Sustainable Water Treatment, Elsevier, Amsterdam, 15-52.
32 Riungu, N.J., Hesampour, M., Pihlajamaki, A., Manttari, M., Home, P.G., Ndegwa, G.M. (2012), "Removal of pesticides from water by nanofiltration", J. Eng. Comput. Appl. Sci., 38, 50-60.
33 Sanches, S.M.L. (2013), "Integration of membrane and photolysis processes for drinking water", Ph.D. Dissertation, Universidade Nova de Lisboa, Lisbon, Portugal.
34 Schaep, J., Van der Bruggen, B., Uytterhoeven, S., Croux, R., Vandecasteele, C., Wilms, D., Van Houtte, E., Vanlerberghe, F. (1998), "Removal of hardness from groundwater by nanofiltration", Desalination, 119(1-3), 295-302.   DOI
35 Sentana, I., Puche, R.D.S., Sentana, E., Prats, D. (2011), "Reduction of chlorination by products in surface water using ceramic nanofiltration membranes", Desalination, 277(1-3) 147-155.   DOI
36 Shon, H.K., Phuntsho, S., Chaudhary, D.S., Vigneswaran, S., Cho, J. (2013), "Nanofiltration for water and wastewater treatment-a mini review", Drink. Water Eng. Sci., 6(1), 47-53.   DOI
37 Vergili, I. (2013), "Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources", J. Environ. Manag., 127, 177-187.   DOI
38 Zwiener, C. (2014), "Investigation of novel material for effective photodegradation of bezafibrate in aqueous samples", Environ. Sci. Pollut. Res., 21(7), 5242-5248.   DOI