Browse > Article
http://dx.doi.org/10.12989/mwt.2018.9.1.063

Removal of Cd(II) from water using carbon, boron nitride and silicon carbide nanotubes  

Azamat, Jafar (Department of Chemical Engineering, Ahar Branch, Islamic Azad University)
Hazizadeh, Behzad (Department of Chemical Engineering, Ahar Branch, Islamic Azad University)
Publication Information
Membrane and Water Treatment / v.9, no.1, 2018 , pp. 63-68 More about this Journal
Abstract
Molecular dynamics simulations were used to study the removal of Cd(II) as a heavy metal from wastewater using armchair carbon nanotube, boron nitride nanotube and silicon carbide nanotubes under applied electric field. The system contains an aqueous solution of $CdCl_2$ as a heavy metal and a (7,7) nanotube as a nanostructured membrane, embedded in a silicon nitride membrane. An external electric field was applied to the considered system for the removal of $Cd^{2+}$ through nanotubes. The simulation results show that in the same conditions, considered armchair nanotubes were capable to remove $Cd^{2+}$ from wastewater with different ratios. Our results reveal that the removal of heavy metals ions through armchair carbon, boron nitride and silicon carbide nanotubes was attributed to the applied electric field. The selective removal phenomenon is explained with the calculation of potential of mean force. Therefore, the investigated systems can be recommended as a model for the water treatment.
Keywords
heavy metal; Cd(II); ion separation; nanotube; PMF;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Won, C.Y. and Aluru, N.R. (2007), "Water permeation through a subnanometer boron nitride nanotube", J. Am. Chem. Soc., 129(10), 2748-2749.   DOI
2 Won, C.Y. and Aluru, N.R. (2009), "A chloride ion-selective boron nitride nanotube", Chem. Phys. Lett., 478(4), 185-190.   DOI
3 Yanagisawa, H., Matsumoto, Y. and Machida, M. (2010), "Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution", Appl. Surf. Sci., 256(6), 1619-1623.   DOI
4 Zhang, F.S. and Itoh, H. (2006), "Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent", Chemosphere, 65(1), 125-131.   DOI
5 Zhao, J.X. and Ding, Y.H. (2009), "Can silicon carbide nanotubes sense carbon dioxide?", J. Chem. Theor. Comput., 5(4), 1099-1105.   DOI
6 Thomas, M., Corry, B. and Hilder, T.A. (2014), "What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation?", Small, 10(8), 1453-1465.   DOI
7 Azamat, J., Khataee, A. and Joo, S.W. (2016b), "Separation of copper and mercury as heavy metals from aqueous solution using functionalized boron nitride nanosheets: A theoretical study", J. Mol. Struct., 1108, 144-149.   DOI
8 Alyuz, B. and Veli, S. (2009), "Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins", J. Hazard. Mater., 167(1), 482-488.   DOI
9 Azamat, J. (2016), "Functionalized graphene nanosheet as a membrane for water desalination using applied electric fields: Insights from molecular dynamics simulations", J. Phys. Chem. C, 120(41), 23883-23891.   DOI
10 Azamat, J., Balaei, A. and Gerami, M. (2016a), "A theoretical study of nanostructure membranes for separating Li+ and Mg2+ from Cl-", Comput. Mater. Sci., 113, 66-74.   DOI
11 Azamat, J., Sardroodi, J.J., Mansouri, K. and Poursoltani, L. (2016c), "Molecular dynamics simulation of transport of water/DMSO and water/acetone mixtures through boron nitride nanotube", Fluid Phase Equilib., 425, 230-236.   DOI
12 Bai, D. (2011), "Size, morphology and temperature dependence of the thermal conductivity of single-walled silicon carbide nanotubes", Fuller. Nanotube Carbon Nanostruct., 19(4), 271-288.   DOI
13 Barzegar, A., Mansouri, A. and Azamat, J. (2016), "Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides", J. Mol. Graph. Modell., 64, 75-84.   DOI
14 Chen, F., Luo, G., Yang, W. andWang, Y. (2005), "Preparation and adsorption ability of polysulfone microcapsules containing modified chitosan gel", Tsinghua Sci. Technol., 10(5), 535-541.   DOI
15 Chen, G. (2004), "Electrochemical technologies in wastewater treatment", Sep. Purif. Technol., 38(1), 11-41.   DOI
16 Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S. and Chowdhury, Z.Z. (2014), "Carbon nanotube membranes for water purification: A bright future in water desalination", Desalination, 336, 97-109.   DOI
17 Corry, B. (2008), "Designing carbon nanotube membranes for efficient water desalination", J. Phys. Chem. B, 112(5), 1427-1434.   DOI
18 Csefalvay, E., Pauer, V. and Mizsey, P. (2009), "Recovery of copper from process waters by nanofiltration and reverse osmosis", Desalination, 240(1-3), 132-142.   DOI
19 Darden, T., York, D. and Pedersen, L. (1993), "Particle mesh ewald: An N.og(N) method for Ewald sums in large systems", J. Chem. Phys., 98(12), 10089-10092.   DOI
20 El Samrani, A.G., Lartiges, B.S. and Villieras, F. (2008), "Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization", Water Res., 42(4), 951-960.   DOI
21 Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O ., Snurr, R.Q., O'Keeffe, M., Kim, J. and Yaghi, O.M. (2010), "Ultrahigh porosity in metal-organic frameworks", Sci., 329(5990), 424-428.   DOI
22 Gao, J., Sun, S.P., Zhu, W.P. and Chung, T.S. (2014), "Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal", J. Membr. Sci., 452, 300-310.   DOI
23 Ghosh, P., Samanta, A.N. and Ray, S. (2011), "Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-fenton treatment and chemical precipitation", Desalination, 266(1), 213-217.   DOI
24 Golberg, D., Bando, Y., Tang, C.C. and Zhi, C.Y. (2007), "Boron nitride nanotubes", Adv. Mater., 19(18), 2413-2432.   DOI
25 Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: Visual molecular dynamics", J. Mol. Graph., 14(1), 33-38.   DOI
26 Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V. and Bachas, L.G. (2004), "Aligned multiwalled carbon nanotube membranes", Sci., 303(5654), 62-65.   DOI
27 Holt, J.K., Noy, A., Huser, T., Eaglesham, D. and Bakajin, O. (2004), "Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport", Nano Lett., 4(11), 2245-2250.   DOI
28 Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Sci., 312(5776), 1034-1037.   DOI
29 Huang, K., Xiu, Y. and Zhu, H. (2013), "Removal of heavy metal ions from aqueous solution by chemically modified mangosteen pericarp", Desalin. Water Treat., 52(37-39), 7108-7116.
30 Hummer, G., Rasaiah, J.C. and Noworyta, J.P. (2001), "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, 414(6860), 188-190.   DOI
31 Jia, Y., Zhuang, G. and Wang, J. (2012), "Electric field induced silicon carbide nanotubes: A promising gas sensor for detecting SO2", J. Phys. D Appl. Phys., 45(6), 065305.   DOI
32 Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L. (1983), "Comparison of simple potential functions for simulating liquid water", J. Chem. Phys., 79(2), 926-935.   DOI
33 Kjellander, R. and Greberg, H. (1998), "Mechanisms behind concentration profiles illustrated by charge and concentration distributions around ions in double layers", J. Electroanal. Chem., 450(2), 233-251.   DOI
34 Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L. and Schulten, K. (2005), "Scalable molecular dynamics with NAMD", J. Comput. Chem., 26(16), 1781-1802.   DOI
35 Li, P., Roberts, B.P., Chakravorty, D.K. and Merz, K.M. (2013), "Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent", J. Chem. Theory Comput., 9(6), 2733-2748.   DOI
36 Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes", Nature, 438(7064), 44.   DOI
37 Menon, M., Richter, E., Mavrandonakis, A., Froudakis, G. and Andriotis, A.N. (2004), "Structure and stability of SiC nanotubes", Phys. Rev. B Condens. Matter, 69(11), 115322.   DOI
38 Mpourmpakis, G., Froudakis, G.E., Lithoxoos, G.P. and Samios, J. (2006), "SiC nanotubes: A novel material for hydrogen storage", Nano Lett., 6(8), 1581-1583.   DOI
39 Pham-Huu, C., Keller, N., Ehret, G. and Ledoux, M.J. (2001), "The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential", J. Catal., 200(2), 400-410.   DOI
40 Richards, L.A., Richards, B.S., Corry, B. and Schafer, A.I. (2013), "Experimental energy barriers to anions transporting through nanofiltration membranes", Environ. Sci. Technol., 47(4), 1968-1976.   DOI
41 Roux, B. (1995), "The calculation of the potential of mean force using computer simulations", Comput. Phys. Commun., 91(1-3), 275-282.   DOI
42 Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Montgomery, J.A. (1993), "General atomic and molecular electronic structure system", J. Comput. Chem., 14(11), 1347-1363.   DOI
43 Tang, D. and Kim, D. (2014), "Temperature effect on ion selectivity of potassium and sodium ions in solution", Chem. Phys., 428, 14-18.   DOI
44 Shim, Y., Jung, Y. and Kim, H.J. (2011), "Carbon nanotubes in benzene: Internal and external solvation", Phys. Chem. Chem. Phys., 13(9), 3969-3978.   DOI