Browse > Article
http://dx.doi.org/10.12989/mwt.2018.9.1.033

Morphological features of thermophilic activated sludge treating food industry wastewater in MBR  

Ince, Mahir (Department of Environmental Engineering, Yildiz Technical University)
Topaloglu, Alikemal (Department of Environmental Engineering,Bulent Ecevit University)
Ince, Elif (Department of Environmental Engineering, Gebze Technical University)
Publication Information
Membrane and Water Treatment / v.9, no.1, 2018 , pp. 33-42 More about this Journal
Abstract
Microscopic examination of the activated sludge and morphological characterization of the flocs provides detailed information about the treatment process. The aim of this study is to investigate the morphological parameters of flocs obtained from a thermophilic jet loop membrane bioreactor (JLMBR) in different sludge retention times (SRTs), considering EPS and SMP concentration, hydrophobicity, zeta potential. The results showed that irregularity decreased with the increasing SRT. The compactness value was calculated to be less than 1 for all SRTs. However, the sludge had a more compact structure when the SRT increased. Zeta potential increased whereas hydrophobicity and floc size reduced, with increasing SRT. Furthermore, 2-D porosity calculated using the hole ratio was higher at greater SRTs. Hence, there was a significant correlation between the results obtained using the imaging technique and operation conditions of thermophilic JLMBR.
Keywords
EPS; hydrophobicity; membrane bioreactor; morphological parameters; SMP; thermophilic;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Guttormsen, K.G. and Carlson, D.A. (1969), Current Practice in Potato Processing Waste Treatment, Water Pollution Research Series, Report No. DAST-14., Water Pollution Control Federation, US Department of the Interior, Washington, D.C., U.S.A.
2 Hai, F., Yamamoto, K. and Lee, C. (2014), Membrane Biological Reactors Theory, Modeling, Design, Management and Applications to Wastewater Reuse, IWA Publishing, London.
3 Hsu, L.C., Fang, J., Borca-Tasciuc, D.A., Worobo, R.W. and Moraru, C.I. (2013), "Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces", Appl. Environ. Microb., 79(8), 2703-2712.   DOI
4 Hung, Y.T., Lo, H.H., Awad, A. and Salman, H. (2006), Potato Wastewater Treatment, in Waste Treatment in the Food Processing Industry, CRC Press, Taylor and Francis Group, Florida, U.S.A.
5 Iorhemen, O.T., Hamza, R.A. and Tay, J. H. (2016), "Membrane bioreactor (MBR) technology for Wastewater treatment and reclamation: membrane fouling", Membranes, 6(33), 1-29.
6 Jalali, S., Shayegan, J. and Rezasoltani, S. (2015), "Rapid start-up and improvement of granulation in SBR", J. Environ. Health Sci. Eng., 13(36), 1-11.   DOI
7 Jang, N., Ren, X., Choi, K. and Kim, I.S. (2006.), "Comparison of membrane bio-fouling in nitrification and denitrification for the membrane bio-reactor (MBR)", Water Sci. Technol., 53(6), 43-49.   DOI
8 Jin, B., Wilen, B.M. and Lant, P. (2003), "A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge", Chem. Eng. J., 95(1), 221-234.   DOI
9 Jin, H., Wang, Y., Li, T., Dong, Y. and Li, J. (2013), "Differences in rheological and fractal properties of conditioned and raw sewage sludge", J. Environ. Sci., 25(6), 1145-1153.   DOI
10 Ke, O. and Junxin, L. (2009), "Effect of sludge retention time on sludge characteristics and membrane fouling of membrane bioreactor", J. Environ. Sci., 21(10), 1329-1335.   DOI
11 Koseoglu-Imer, D.Y., Dizge, N., Karagunduz, A. and Keskinler, B. (2011), "Influence of membrane fouling reducers (MFRs) on filterability of disperse mixed liquor of Jet Loop Bioreactors", Bioresour. Technol., 102(13), 6843-6849.   DOI
12 Krasowska, A. and Sigler, K. (2014), "How microorganisms use hydrophobicity and what does this mean for human needs?", Cell. Infect. Microbiol., 4, 1-7.
13 Lapara, T.M. and Alleman, J.E. (1999), "Thermophilic aerobic biological wastewater treatment", Water Res., 33(4), 895-908.   DOI
14 Lee, W., Kang, S. and Shin, H. (2003), "Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors", J. Membr. Sci., 216(1), 217-27.   DOI
15 Li, A.J., Li, X.Y. and Gu, J.D. (2016), "Characteristics of free cells and aggregated flocs for the flocculation and sedimentation of activated sludge", J. Environ. Sci. Technol., 13(2), 581-588.   DOI
16 Li, A.J., Li, X.Y. and Yu, H.Q. (2011), "Effect of the food-tomicroorganism (F/M) ratio on the formation and size of aerobic sludge granules", Process Biochem., 46(12), 2269-2276.   DOI
17 Li, D.H. and Ganczarczyk, J.J. (1993), "Factor effecting dispersion of activated sludge flocs", Water Environ. Res., 65(3), 258-263.   DOI
18 Li, H., Fane, A., Coster, H. and Vigneswaran, S. (2003), "Observation of deposition and removal behavior of submicron bacteria on the membrane surface during crossflow microfiltration", J. Membr. Sci., 217(1), 29-41.   DOI
19 Liu, Q.S., Liu, Y., Tay, J.H. and Show, K.Y. (2005), "Responses of sludge flocs to shear strength", Process Biochem., 40(10), 3213-3217.   DOI
20 Liao, B.Q., Allen, D.G., Droppo, I.G., Leppard, G.G. and Liss, S.N. (2001), "Surface properties of sludge and their role in bioflocculation and settleability", Water Res., 35(2), 339-350.   DOI
21 Liu, R., Huang, X., Sun, Y.F. and Qian, Y. (2003), "Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor", Process Biochem., 39(2), 157-163.   DOI
22 Liwarska-Bizukojc, E. (2005), "Application of image analysis techniques in activated sludge wastewater treatment processes", Biotechnol. Lett., 27(19), 1427-1433.   DOI
23 Lorite, G.S., Rodrigues, C.M., De Souza, A.A., Kranz, C., Mizaikoff, B. and Cotta, M.A. (2011), "The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution", J. Colloid Interf. Sci., 359(1), 289-295.   DOI
24 Masse, A., Sperandio, M. and Cabassud, C. (2006), "Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time", Water Res., 40(12), 2405-2415.   DOI
25 Nisar, H., Xue Yong, L., Humaira Ho, Y.K., Voon, Y.V. and Siang, S.C. (2012), "Application of imaging techniques for monitoring flocs in activated sludge", International Conference on Biomedical Engineering (ICoBE), Penang, February.
26 Liu, Y. and Fang, H.H.P. (2010), "Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge", Crit. Rev. Env. Sci. Tec., 33, 237-273.
27 Nouha, K., Yan, S., Tyagi, R.D. and Surampalli, R.Y. (2015), "EPS producing microorganisms from municipal wastewater activated sludge", J. Pet. Environ. Biotechnol., 7, 1-13.
28 Overmann, J. and Pfennig, N. (1992), "Buoyancy regulation and aggregate formation in Amoebacter purpureus from Mahony lake", FEMS Microbiol. Lett., 101(2), 67-79.   DOI
29 Perez, Y.G., Leite, S.G.F. and Coelho, M.A.Z. (2006), "Activated sludge morphology characterization through an image analysis procedure", Braz. J. Chem. Eng., 23(3), 319-330.   DOI
30 Rozich, A.F. and Colvin, R.J. "Design and operational considerations for thermophilic aerobic reactors treating high strength wastes and sludges", Proceedings of the 52nd Industrial Waste Conference, Ann Arbor, Indiana, U.S.A., May.
31 Tinggang, L., Renbi, B. and Junxin, L. (2008), "Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm", J. Biotechnol., 135(1), 52-57.   DOI
32 Sebayang, P., Tetuko, A. and Sardjono, P. (2013), "Fluid dynamics properties of barium hexaferrite particle", Jurnal Fisika Indonesia, 17(49), 36-41.
33 Sponza, D.T. (2003), "Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady state conditions", Enzyme Microb. Technol., 32(3), 375-385.   DOI
34 Sun, D.D. and Liu, S. (2013), "Comparison study on membrane fouling by various sludge fractions with long solid retention time in membrane bioreactor", Membr. Water Treat., 4(3), 175-189.   DOI
35 Surucu G.A. (1975), "Thermophilic aerobic treatment of highstrength wastewaters with recovery of protein", Ph.D. Dissertation, University of Illinois Urbana-Champaign, Champaign, Illinois, U.S.A.
36 Tay, J.H., Liu, Q.S. and Liu, Y. (2001), "The role of cellular polysaccharides in the formation and stability of aerobic granules", Lett. Appl. Microbiol., 33(3), 222-226.   DOI
37 Tuson, H.H. and Weibel, D.B. (2013), "Bacteria-surface interactions", Soft Matter, 9(17), 4368-4380.   DOI
38 Vogelaar, J.C.T., De Keizer, A., Spijker, S. and Lettinga, G. (2005), "Bioflocculation of mesophilic and thermophilic activated sludge", Water Res., 39(1), 37-46.   DOI
39 Waite, T.D. (1999), "Measurement and implications of floc structure in water and wastewater treatment", Colloid Surface. A Physicochem. Eng. Aspect., 151(1), 27-41.   DOI
40 Wang, Y.L. and Dentel, S.K. (2010), "The effect of high speed mixing and polymer dosing rates on the geometric and rheological characteristics of conditioned anaerobic digested sludge (ADS)", Water Res., 44(20), 6041-6052.   DOI
41 Yu, L., Han, M. and He, F. (2017), "A review of treating oily wastewater", Arab. J. Chem., 10, S1913-S1922.   DOI
42 Wilen, B.M., Jin, B. and Lant, P. (2003), "Impacts of structural characteristics on activated sludge floc stability", Water Res., 37(15), 3632-3645.   DOI
43 Xie, B., Dai, X.C. and Xu, Y.T. (2007), "Cause and pro-alarm control of bulking and foaming by Microthrix parvicella-A case study in triple oxidation ditch at a wastewater treatment plant", J. Hazard. Mater., 143(1), 184-191.   DOI
44 Xie, B., Gu, J. and Lu, J. (2010), "Surface properties of bacteria from activated sludge in relation to bioflocculation", J. Environ. Sci., 22(12), 1840-1845.   DOI
45 Yin, W., Yang, F., Bick, A., Oron, G. and Herzberg, M. (2010), "Extracellular polymeric substances (EPS) in a hybrid growth membrane bioreactor (HG-MBR): viscoelastic and adherence characteristics", Environ. Sci. Technol., 44(22), 8636-8643.   DOI
46 Yingyi, D., Lan, W. and Hongzhang, C. (2012), "Digital image analysis and fractal-based kinetic modelling for fungal biomass determination in solid-state fermentation", Biochem. Eng. J., 67, 60-67.   DOI
47 Zhang, H., Wang, B., Yu, H., Zhang, L. and Song, L., (2015b), "Relation between sludge properties and filterability in MBR: Under infinite SRT", Membr. Water Treat., 6(6), 501-512.   DOI
48 Zhang, J.S., Chuan, C.H., Zhou, J.T. and Fane, A.G. (2006), "Effect of sludge retention time on membrane biofouling intensity in a submerged membrane bioreactor", Sep. Sci. Technol., 41(7), 1313-1329.   DOI
49 Zhang, P., Shen, Y., Guo, J.S., Li, C., Wang, H., Chen, Y.P., Yan, P., Yang, J.X. and Fang, F. (2015a), "Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics", Scientific Reports, 5, 1-11.   DOI
50 Zhang, X. and Liu, S. (2011), "Effect of shear stress on activated sludge granular in Sequencing batch reactor", Proceedings of the 2010 International Conference on Biology, Environment and Chemistry, Hong Kong, China, December.
51 Zhao, F. and Chen, Z. (2011), "Numerical study on moisture transfer in ultrasound-assisted convective drying process of sludge", Dry. Technol., 29(12), 1404-1415.   DOI
52 Zhu, Z., Yu, J., Wang, H., Dou, J. and Wang, C. (2015), "Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions", Water, 7(8), 4385-4408.   DOI
53 Amaral, A.L. and Ferreira, E.C. (2005), "Activated sludge monitoring of a wastewater treatment plant using image analysis and partial least squares regression", Anal. Chim. Acta, 544(1), 246-253.   DOI
54 A.P.H.A. (2005), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., U.S.A.
55 Adonadaga, M.G. (2015), "Effect of dissolved oxygen concentration on morphology and settleability of activated sludge flocs", J. Appl. Environ. Microbiol., 3(2), 31-37.
56 Amaral, A.L. (2003), "Image analysis in biotechnological processes: Applications to wastewater treatment", Ph.D. Dissertation, University of Minho, Braga, Portugal.
57 Andreadakis, A.D. (1993), "Physical and chemical properties of sludge", Water Res., 27(12), 1707-1714.   DOI
58 Barbusinski, K. and Koscielniak, H. (1995), "Influence of substrate loading intensity on floc size in sludge process", Water Res., 29(7), 1703-1710.   DOI
59 Bushell, G.C., Yan, Y.D., Woodfield, D., Raper, J. and Amal, R. (2002), "On techniques for the measurement of the mass fractal dimension of aggregates", Adv. Colloid Interfac. Sci., 95(1), 1-50.   DOI
60 Chen, H., Zheng, X., Chen, Y., Li, M., Liu, K. and Li, X. (2014), "Influence of copper nanoparticles on the physical-chemical properties of activated sludge", PloS One, 9(3), 1-8.
61 Da Motta, M., Pons, M.N., Roche, N. and Vivier, H. (2001), "Characterization of activated sludge by automated image analysis", Biochem. Eng. J., 9(3), 165-173.   DOI
62 Das, M.P. (2014), "Effect of cell surface hydrophobicity in microbial biofilm formation", Eur. J. Exp. Biol., 4(2), 254-256.
63 Deng, L., Guo, W., Ngo, H.H., Zhang, J., Liang, S., Xia, Zhang, Z. and Li, J. (2014), "A comparison study on membrane fouling in a sponge-submerged membrane bioreactor and a conventional membrane bioreactor", Bioresour. Technol., 165, 69-74.   DOI
64 Drews, A. (2010), "Review: Membrane fouling in membrane bioreactors characterisation, contradictions, cause and cures", J. Membr. Sci., 363(1), 1-28.   DOI
65 Farizoglu, B. and Keskinler, B. (2006), "Sludge characteristics and effect of crossflow membrane filtration on membrane fouling in a jet loop membrane bioreactor (JLMBR)", J. Membr. Sci., 279(1), 578-587.   DOI
66 Farizoglu, B., Keskinler, B., Yildiz, E. and Nuhoglu, A. (2004), "Cheese whey treatment performance of an aerobic jet loop membrane bioreactor", Process Biochem., 39(12), 2283-2291.   DOI
67 Grijspeerdt, K. and Verstraete, W. (1997), "Image analysis to estimate the settleability and concentration of activated sludge", Water Res., 31(5), 1126-1134.   DOI
68 Griz, F. (2015), "Fractal geometry as a tool for investigating benign and malignant breast mammography lesions", Fract. Geomet. Nonlin. Anal. Med. Biol., 1(1), 16-18.