Browse > Article
http://dx.doi.org/10.12989/mwt.2013.04.3.215

On the drying out of bipolar membranes  

Kedem, Ora (Weizmann Institute of Science)
Ghermandi, Andrea (Dept. of Natural Resources and Environmental Management, University of Haifa)
Messalem, Rami (Zuckerberg Inst. for Water Research, Ben Gurion University of the Negev)
Publication Information
Membrane and Water Treatment / v.4, no.3, 2013 , pp. 215-222 More about this Journal
Abstract
The maximum current density that can be achieved in bipolar membrane electrodialysis is limited by the sharp increase in resistance that is experienced when the water content at the membrane interface is not adequately replenished and the membranes dry out. In this paper we show how the water content near the interface depends on the properties of the membranes. A water retaining parameter is introduced, which characterizes the thermodynamic properties of the membrane material and may be used to guide the choice of polymers for mitigation of the dry-out problem.
Keywords
bipolar membrane; dry-out; current-voltage curve; electro-osmosis; water absorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aritomi, T., van den Boomgaard, T. and Strathmann, H. (1996), "Current-voltage curve of a bipolar membrane at high current density", Desalination, 104(1-2), 13-18.   DOI   ScienceOn
2 Balster, J. (2006), "Membrane module and process development for monopolar and bipolar membrane electrodialysis", Ph.D. Dissertation, University of Twente, The Netherlands.
3 Balster, J., Sumbharaju, R., Srikantharajah, S., Punt, I., Stamatialis, D.F., Jordan, V. and Wessling, M. (2007), "Asymmetric bipolar membrane: A tool to improve product purity", J. Membr. Sci., 287(2), 246-256.   DOI   ScienceOn
4 Huang, C. and Xu, T. (2006), "Electrodialysis with bipolar membranes for sustainable development", Environ. Sci. Technol., 40(17), 5233-5243.   DOI   ScienceOn
5 Kedem, O. and Freger, V. (2008), "Determination of concentration-dependent transport coefficients in nanofiltration: Defining an optimal set of coefficients", J. Membr. Sci., 310(1-2), 586-593.   DOI   ScienceOn
6 Kreuer, K., Schuster, M., Obliers, B., Diat, O., Traub, U., Fuchs, A., Klock, U., Paddison, S. and Maier, J. (2008), "Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells", J. Power Sources, 178(2), 499-509.   DOI   ScienceOn
7 Krol, J.J., Jansink, M., Wessling, M. and Strathmann, H. (1998), "Behaviour of bipolar membranes at high current density Water diffusion limitation", Sep. Purif. Technol., 14(1-3), 41-52.   DOI   ScienceOn
8 Narebska, A., Koter, S. and Kujawski, W. (1985), "Irreversible thermodynamics of transport across charged membranes: Part I -- Macroscopic resistance coefficients for a system with nafion 120 membrane", J. Membr. Sci., 25(2), 153-170.   DOI   ScienceOn
9 Spiegler, K. (1958), "Transport processes in ionic membranes", Tr. Farad. Soc., 54, 1408-1428.   DOI
10 Xu, T. (2005), "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263, 1-29.   DOI   ScienceOn