Browse > Article
http://dx.doi.org/10.12989/gae.2021.27.4.333

A generalized viscoelastic model and the corresponding parameter conversion method  

Huang, Shuling (Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute)
Ding, Xiuli (Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute)
Huang, Xiaohua (College of Civil Engineering and Architecture, Guangxi University)
He, Jun (Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute)
Zhang, Yuting (Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute)
Publication Information
Geomechanics and Engineering / v.27, no.4, 2021 , pp. 333-346 More about this Journal
Abstract
Obtaining applicable rheological model and corresponding rheological parameters are the key issues of the long-term stability analysis of engineering rock mass. In this study, a generalized viscoelastic combination model with considering the effects of stress level is proposed. The proposed model is composed of a brittle viscous body and several Kelvin bodies in series, which unites the generalized Kelvin attenuated creep model and the generalized Burgers non-attenuated creep model. In addition, the tension-compression parameters and the shear parameters are used to express the proposed model, respectively. As these two types of parameters are often converted in the creep tests and engineering applications or change occurs to parameter types when extend the creep model from one-dimensional to three-dimensional. Thus, based on the assumption of constant volumetric modulus, a new conversion equation between the tension-compression parameters and the shear parameters is created for the proposed generalized viscoelastic combination model. Based on the new conversion equation, the three-dimensional extension of the generalized viscoelastic combination model expressed by both the tension-compression parameters and the shear parameters are derived. The proposed creep model and parameter conversion equation are then verified by the laboratory uniaxial compression test and triaxial compression test. The above proposed creep model and parameter conversion equation are applied to the example of rock foundation age deformation. Based on the application, potential problems caused by parameter conversion during rheological numerical simulations are discussed. Based on the discussion, the superiority of the parameter conversion method proposed in this study is fully illustrated.
Keywords
generalized viscoelastic combination model; parameter conversion; rock creep; shear parameter; tension-compression parameter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Amitrano, D. and Helmstetter, A. (2006), "Brittle creep, damage, and time to failure in rocks", J. Geophys. Res. Solid Earth, 111, B11201. https://doi.org/10.1029/2005jb004252.   DOI
2 Bozzano, F., Martino, S., Montagna, A. and Prestininzi, A. (2012), "Back analysis of a rock landslide to infer rheological parameters", Eng. Geology, 131-132, 45-56. https://doi.org/10.1016/j.enggeo.2012.02.003.   DOI
3 Brantut, N., Heap, M.J., Baud, P. and Meredith, P.G. (2014), "Rate- and strain-dependent brittle deformation of rocks", J. Geophys. Res. Solid Earth, 119, 1818-1836. https://doi.org/10.1002/2013jb010448.   DOI
4 Callahan, G.D., Mellegard, K.D. and Hansen, F.D. (1998), "Constitutive behavior of reconsolidating crushed salt", Int. J. Rock Mech. Mining Sci., 35, 422-423. https://doi.org/10.1016/S0148-9062(98)00045-X.   DOI
5 Chen, S.H. and Pande, G.N. (1994), "Rheological model and finite element analysis of jointed rock masses reinforced by passive, fully-grouted bolts", Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 31, 273-277. https://doi.org/10.1016/0148-9062(94)90472-3.   DOI
6 Christensen, R.M. (1982), Theory of Viscoelasticity: An Introduction, Academic Press, New York, USA.
7 Cornelius, R.R. and Scott, P.A. (1993), "A materials failure relation of accelerating creep as empirical description of damage accumulation", Rock Mech. Rock Eng., 26, 233-252. https://doi.org/10.1007/BF01040117.   DOI
8 Costin, L.S. (1988), "Time-dependent deformation and failure", Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 25, A166. https://doi.org/10.1016/0148-9062(88)91561-6.   DOI
9 Huang, P., Zhang, J., Yan, X., Spearing, A.J.S., Li, M. and Liu, S. (2021), "Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue", Int. J. Mining Sci. Technol., 31(2), 279-289. https://doi.org/10.1016/j.ijmst.2021.01.004.   DOI
10 Haupt, M. (1991), "A constitutive law for rock salt based on creep and relaxation tests", Rock Mech. Rock Eng., 24, 179-206. https://doi.org/10.1007/BF01045031.   DOI
11 Ito, H. and Sasajima, S. (1987), "A ten year creep experiment on small rock specimens", Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 24, 113-121. https://doi.org/10.1016/0148-9062(87)91930-9.   DOI
12 Fahimifar, A., Karami, M. and Fahimifar, A. (2015), "Modifications to an elasto-visco-plastic constitutive model for prediction of creep deformation of rock samples", Soils Foundations, 55, 1364-1371. https://doi.org/10.1016/j.sandf.2015.10.003.   DOI
13 Gavrus, A., Massoni, E. and Chenot, J.L. (1996), "An inverse analysis using a finite element model for identification of rheological parameters", J. Mater. Processing Technol., 60, 447-454. https://doi.org/10.1016/0924-0136(96)02369-2.   DOI
14 Huang, S., Ding, X., He, J. and Xiong, S. (2020), "Analytical solution for rock mass bearing plate rheological tests based on a novel viscoelastic combination model", European J. Environ. Civil Eng.. https://doi.org/10.1080/19648189.2020.1796819.   DOI
15 Wang, J.B., Liu, X.R., Song, Z.P. and Shao, Z.S. (2015), "An improved maxwell creep model for salt rock", Geomech. Eng., 9, 499-511. https://doi.org/10.12989/gae.2015.9.4.499.   DOI
16 Malan, D.F. (1999), "Time-dependent behaviour of deep level tabular excavations in hard rock", Rock Mech. Rock Eng., 32, 123-155. https://doi.org/10.1007/s006030050028.   DOI
17 Munson, D.E. (1997), "Constitutive model of creep in rock salt applied to underground room closure", Int. J. Rock Mech. Mining Sci., 34, 233-247. https://doi.org/10.1016/S0148-9062(96)00047-2.   DOI
18 Sterpi, D. and Gioda, G. (2007), "Visco-plastic behaviour around advancing tunnels in squeezing rock", Rock Mech. Rock Eng., 42, 319-339. https://doi.org/10.1007/s00603-007-0137-8.   DOI
19 Xu, T., Tang, C.A., Zhao, J., Li, L. and Heap, M.J. (2012), "Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks", Geophys. J. International, 189, 1781-1796. https://doi.org/10.1111/j.1365-246X.2012.05460.x.   DOI
20 Zhang, C.Y., Ping, C.A.O., Pu, C.Z., Jie, L.I.U. and Wen, P.H. (2014), "Integrated identification method of rheological model of sandstone in sanmenxia bauxite", Transactions Nonferrous Metals Soc. China, 24, 1859-1865. https://doi.org/10.1016/s1003-6326(14)63264-7.   DOI
21 Khaledi, K., Mahmoudi, E., Datcheva, M., Konig, D. and Schanz, T. (2016), "Sensitivity analysis and parameter identification of a time dependent constitutive model for rock salt", J. Comput. Appl. Math., 293, 128-138. https://doi.org/10.1016/j.cam.2015.03.049.   DOI
22 Maranini, E. and Brignoli, M. (1999), "Creep behaviour of a weak rock: Experimental characterization", Int. J. Rock Mech. Mining Sci., 36, 127-138. https://doi.org/10.1016/S0148-9062(98)00171-5.   DOI
23 Okubo, S., Nishimatsu, Y. and Fukui, K. (1991), "Complete creep curves under uniaxial compression", Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 28, 77-82. https://doi.org/10.1016/0148-9062(91)93235-X.   DOI
24 Xu, Ming, Jin, Dehai, Song, Erxiang, et al. (2018), "A rheological model to simulate the shear creep behavior of rockfills considering the influence of stress states", Acta Geotechnica, 13, 1313-1327. https://doi.org/10.1007/s11440-018-0716-8.   DOI
25 Miura, K., Okui, Y. and Horii, H. (2003), "Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system", Mech. Mater., 35, 587-601. https://doi.org/10.1016/S0167-6636(02)00286-7.   DOI
26 Park, S.W. and Schapery, R.A. (1999), "Methods of interconversion between linear viscoelastic material functions. Part I-a numerical method based on prony series", Int. J. Solid. Struct., 36, 1653-1675. https://doi.org/10.1016/S0020-7683(98)00055-9.   DOI
27 Tsai, L.S., Hsieh, Y.M., Weng, M.C., Huang, T.H. and Jeng, F. S. (2008), "Time-dependent deformation behaviors of weak sandstones", Int. J. Rock Mech. Mining Sci., 45, 144-154. https://doi.org/10.1016/j.ijrmms.2007.04.008.   DOI
28 Tschoegl, N.W. (1989), The Phenomenological Theory of Linear Viscoelastic Behavior, Springer, Berlin, Germany.
29 Xie, S.Y., Shao, J.F. and Xu, W.Y. (2011), "Influences of chemical degradation on mechanical behaviour of a limestone", Int. J. Rock Mech. Mining Sci., 48, 741-747. https://doi.org/10.1016/j.ijrmms.2011.04.015.   DOI
30 Yang, W., Luo, G., Duan, K., Jing, W., Zhang, L., Wang, S. and Zhao, Y. (2019), "Development of a damage rheological model and its application in the analysis of mechanical properties of jointed rock masses", Energy Sci. Eng., https://doi.org/10.1002/ese3.331.   DOI
31 Huang, P., Zhang, J., Zhang, Q., Damascene, N.J. and Guo, Y. (2020), "Nonlinear creep model of deep gangue backfilling material and time-dependent characteristics of roof deformation in backfilling mining", Geofluids, 2020(1), 1-10. https://doi.org/10.1155/2020/8816871.   DOI
32 Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, Oct.
33 Zhao, Y., Wang, Y., Wang, W., Wan, W. and Tang, J. (2017), "Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment", Int. J. Rock Mech. Mining Sci., 93, 66-75. https://doi.org/10.1016/j.ijrmms.2017.01.004.   DOI
34 Zhang, C.Q., Zhou, H. and Feng, X.T. (2011), "An index for estimating the stability of brittle surrounding rock mass: FAI and its engineering application", Rock Mech. Rock Eng., 44, 401. https://doi.org/10.1007/s00603-011-0150-9.   DOI
35 Zhang, J.Z., Zhou, X.P. and Yin, P. (2019), "Visco-plastic deformation analysis of rock tunnels based on fractional derivatives", Tunnel. Underground Space Technol., 85, 209-219. https://doi.org/10.1016/j.tust.2018.12.019.   DOI