Browse > Article
http://dx.doi.org/10.12989/gae.2021.27.4.323

An optimized method based on fractal theory to calculate particle size distribution  

Zhang, Zhihong (Key Laboratory of Urban Security & Disaster Engineering, Ministry of Education, Beijing University of Technology)
Yang, Fan (Key Laboratory of Urban Security & Disaster Engineering, Ministry of Education, Beijing University of Technology)
Li, Yanyan (Key Laboratory of Urban Security & Disaster Engineering, Ministry of Education, Beijing University of Technology)
Publication Information
Geomechanics and Engineering / v.27, no.4, 2021 , pp. 323-331 More about this Journal
Abstract
Particle size distribution has a great influence on the physical properties of granular soils. As an important packing material for engineering, the particle size distribution of granular soils needs to be optimized to yield optimal physical and mechanical performance. There are unknown parameters in existing calculation methods for particle size distribution of granular soils. In order to calculate the optimal particle size distribution curve to reach the densest state under existing conditions without unknown parameters, an optimized method has been proposed based on fractal theory in which all parameters can be obtained by particle screening. With this method, particle size distributions of granular soils can be easily quantified. Compared with experimental data obtained by other researchers, the physical characteristics of soils with a better PSD are better, suggesting the superiority of the proposed method. The fractal dimension of good PSDs calculated in this study ranges from 2.21 to 2.63. Further, laboratory consolidation tests show that the deformation of the prepared specimens calculated by the new method is smaller than that of other specimens with different particle size distributions, which further validates the proposed method.
Keywords
compaction; granular soil; fractal theory; optimized method; particle size distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sun, Y., Wang, Z. and Gao, Y. (2019), "Mechanistic representation of the grading-dependent aggregates resiliency using stress transmission column", Geomech. Eng., 17(4), 405-411. https://doi.org/10.12989/gae.2019.17.4.405.   DOI
2 Turcotte, L.D. (1986), "Fractals and fragmentation", J. Geophys. Res. Solid Earth, 91(B2), 1921-1926. https://doi.org/10.1029/jb091ib02p01921.   DOI
3 Zhuang, J., Jin, Y. and Miyazaki, T. (2001), "Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept", Soil Sci., 166(5), 308-321. https://doi.org/10.1097/00010694-200105000-00002.   DOI
4 Zobeck, T.M., Gill, T.E. and Popham, T.W. (2015), "A two-parameter Weibull function to describe airborne dust particle size distributions", Earth Surface Processes Landforms: J. British Geomorphol. Res. Group, 24(10), 943-955. https://doi.org/10.1002/(sici)1096-9837(199909)24:10<943::aidesp30>3.0.co;2-9.   DOI
5 Bayat, H., Rastgo, M., Zadeh, M.M. and Vereecken, H. (2015), "Particle size distribution models, their characteristics and fitting capability", J. Hydrology, 529, 872-889. https://doi.org/10.1016/j.jhydrol.2015.08.067.   DOI
6 Minh, N.H. and Cheng, Y.P. (2013), "A DEM investigation of the effect of particle-size distribution on one-dimensional compression", Geotechnique, 63(1), 44-53. https://doi.org/10.1680/geot.10.P.058.   DOI
7 Zhu, S., Feng, Y.M., Feng, S.R. and Chen, W.Y. (2011), "Particles gradation optimization of blasting rockfill based on fractal theory", Adv. Eng. Mater., 366(366), 469-473. https://doi.org/10.4028/www.scientific.net/AMR.366.469.   DOI
8 Ghasemy, A., Rahimi, E. and Malekzadeh, A. (2019), "Introduction of a new method for determining the particle-size distribution of fine-grained soils", Measurement, 132, 79-86. https://doi.org/10.1016/j.measurement.2018.09.041.   DOI
9 Lamorski, K., Slawinski, C., Moreno, F., Barna, G., Skierucha, W., and Arrue, J. L. (2014), "Modelling soil water retentionusing support vector machines with genetic algorithm optimisation", J. Sci. Indian Res. India, 32(1), 1-10. https://doi.org/10.1155/2014/740521.   DOI
10 Mandelbrot, B.B. (1983), "The fractal geometry of nature", American J. Phys., 51(3), 286-287. https://doi.org/10.1119/1.13295.   DOI
11 Altuhafi, F.N. and Coop, M.R. (2011), "Changes to particle characteristics associated with the compression of sands", Geotechnique, 61(6), 459-471. https://doi.org/10.1680/geot.9.P.114.   DOI
12 Abdel-Jawad, Y.A. and Abdullah, W.S. (2002), "Design of maximum density aggregate grading", Construct. Build. Mater., 16(8), 495-508. https://doi.org/10.1016/s0950-0618(02)00032-6.   DOI
13 Altuhafi, F., Baudet, B. and Sammonds, P. (2010), "The mechanics of subglacial sediment: An example of new transitional behaviour", Canadian Geotech. J., 47(7), 775-790. https://doi.org/10.1139/T09-136.   DOI
14 Altuhafi, F. and Baudet, B.A. (2011b), "A hypothesis on the relative roles of crushing and abrasion in the mechanical genesis of a glacial sediment", Eng. Geology, 120(1), 1-9. https://doi.org/10.1016/j.enggeo.2011.03.002.   DOI
15 Matheson, M.G. (1986), "Relationship between compacted rockfill density and gradation", J. Geotech. Geoenviron., 112(112), 1119-1124. https://doi.org/10.1061/(ASCE)0733-410(1986)112:12(1119).   DOI
16 Shen, Y., Zhu, Y., Liu, H., Li, A. and Ge, H. (2018), "Macro-meso effects of gradation and particle morphology on the compressibility characteristics of calcareous sand", Bulletin Eng. Geology Environ, 77(3), 1047-1055. https://doi.org/10.1007/s10064-017-1157-6.   DOI
17 Dai, B. B., Yang, J., Gu, X. Q. and Zhang, W. (2019), "A numerical analysis of the equivalent skeleton void ratio for silty sand", Geomech. Eng., 17(1):19-30. https://doi.org/10.12989/gae.2019.17.1.019.   DOI
18 Jian, G. and Jun, L. (2017), "Analysis of the thresholds of granular mixtures using the discrete element method", Geomech. Eng., 12(4), 639-655. https://doi.org/10.12989/gae.2017.12.4.639.   DOI
19 Hyodo, M., Wu, Y. and Kajiyama, S. (2017), "Effect of fines on the compression behaviour of poorly graded silica sand", Geomech. Eng., 12(1), 126-138. https://doi.org/10.12989/gae.2017.12.1.127.   DOI
20 Li, Y. (2013), "Effects of particle shape and size distribution on the shear strength behavior of composite soils", Bulletin. Eng. Geology Environ., 72(3-4):371-381. https://doi.org/10.1007/s10064-013-0482-7.   DOI
21 Millan, H., Gonzalezposada, M., Aguilar, M., DomiNguez, J. and Cespedes, L. (2003), "On the fractal scaling of soil data. Particle-size distributions", Geoderma, 117(1), 117-128. https://doi.org/10.1016/S0016-7061(03)00138-1.   DOI
22 Ovalle, C., Frossard, E. and Dano, C. (2014), "The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data", Acta Mech., 225(8), 2199-2216. https://doi.org/10.1007/s00707-014-1127-z.   DOI
23 Perrier, E., Bird, N. and Rieu, M. (1999), "Generalizing the fractal model of soil structure: the pore-solid fractal approach", Geoderma, 88(3-4), 137-164. https://doi.org/10.1016/s0016-7061(98)00102-5.   DOI
24 Zhang, X., Baudet, B.A., Hu, W. and Xu, Q. (2017), "Characterisation of the ultimate particle size distribution of uniform and gap-graded soils", Soils Foundations, 57(4), 603-618. https://doi.org/10.1016/j.sandf.2017.04.002.   DOI
25 Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I. and Haverkamp, R. (2006), "Beerkan estimation of soil transfer parameters through Infiltration experiments-BEST", Soil Sci. Soc. American J., 70(2), 521-532. https://doi.org/10.2136/sssaj2005.0026.   DOI
26 Bird, N.R.A., Perrier, E. and Rieu, M. (2010), "The water retention function for a model of soil structure with pore and solid fractal distributions", Eur. J. Soil Sci., 51(1), 55-63. https://doi.org/10.1046/j.1365-2389.2000.00278.x.   DOI
27 Wang, X. and Li, J. (2015), "Influence of particle gradation curve on granular packing characteristics", Procedia Eng., 102(9), 1827-1834. https://doi.org/10.1016/j.proeng.2015.01.320.   DOI
28 Altuhafi, F., Baudet, B.A. and Sammonds, P. (2011a), "On the particle size distribution of a basaltic till", Soils Foundations, 51(1), 113-121. https://doi.org/10.3208/sandf.51.113.   DOI
29 Tyler, S.W. and Wheatcraft, S.W. (1992), "Fractal scaling of soil particle-size distributions: analysis and limitations", Soil Sci. Soc. American J., 56(2), 362. https://doi.org/10.2136/sssaj1992.03615995005600020005x.   DOI
30 Vipulanandan, C. and Ozgurel, H.G. (2009), "Simplified relationships for particle-size distribution and permeation groutability limits for soils", J. Geotech. Geoenviron., 135(135), 1190-1197. https://doi.org/10.1061/(asce)gt.1943-5606.0000064.   DOI
31 Wu, W. and Li, W. (2017), "Porosity of bimodal sediment mixture with particle filling", Int. J. Sediment Res., 32(3), 253-259. https://doi.org/10.1016/j.ijsrc.2017.03.005.   DOI
32 Xiaoming, L., Shizhang, Q., Renpeng, C. and Sha, C. (2018), "Development of a two-dimensional fractal model for analyzing the particle size distribution of geomaterials", J. Mater. Civil Eng., 30(8), 1-8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002365.   DOI
33 Yasrebi, A. B., Wetherelt, A., Foster, P., Coggan, J., Afzal, P., Agterberg, F. and Ahangaran, D.K. (2014), "Application of a density-volume fractal model for rock characterisation of the Kahang porphyry deposit", Int. J. Rock. Mech. Min., 66(1), 188-193. https://doi.org/10.1016/j.ijrmms.2013.12.022.   DOI
34 Park, T. W., Kim, H. J., Tanvir, M. T., Lee, J. B. and Moon, S.G., (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/gae.2018.14.1.099.   DOI