Effect of freeze-thaw cycles on the mechanical properties and constitutive model of saline soil |
Cheng, Shukai
(College of Construction Engineering, Jilin University)
Wang, Qing (College of Construction Engineering, Jilin University) Fu, Huicheng (Jilin Provincial Water Resources Department) Wang, Jiaqi (College of Construction Engineering, Jilin University) Han, Yan (College of Construction Engineering, Jilin University) Shen, Jiejie (College of Construction Engineering, Jilin University) Lin, Sen (Jilin Provincial Water Resources Department) |
1 | Liu, M., Liu, H. and Gao, Y. (2012), "New double yield surface model for coarse granular materials incorporating nonlinear unified failure criterion", J. Central South U., 19(11), 3236-3243. https://doi.org/10.1007/s11771-012-1400-z. DOI |
2 | Suebsuk, J., Horpibulsuk, S. and Liu, M.D. (2019), "Compression and shear responses of structured clays during subyielding", Geomech. Eng., 18(2), 121-131. https://doi.org/10.12989/gae.2019.18.2.121. DOI |
3 | Wang, Q., Kong, Y., Zhang, X., Ruan, Y. and Chen, Y. (2016), "Mechanical effect of pre-consolidation pressure of structural behavior soil", J. Southwest Jiaotong U., 51(5), 987-994. http://doi.org/10.3969/j.issn.0258-2724.2016.05.023. DOI |
4 | Wang, S., Wang, Q., Qi, J. and Liu, F. (2018), "Experimental study on freezing point of saline soft clay after freeze-thaw cycling", Geomech. Eng., 15(4), 997-1004. http://dx.doi.org/10.12989/gae.2018.15.4.997. DOI |
5 | Zhang, M., Lai, Y., Li, D., Tong, G. and Li, J. (2012), "Numerical analysis for thermal characteristics of cinderblock interlayer embankments in permafrost regions", Appl. Thermal Eng., 36, 252-259. http://doi.org/10.1016/j.applthermaleng.2011.10.020. DOI |
6 | Zhang, X., Zhai, E., Sun, D.A., Wu, Y. and Lu, Y. (2021), "Theoretical and numerical analyses on hydro-thermal-salt-mechanical interaction of unsaturated salinized soil subjected to typical unidirectional freezing process", Int. J. Geomech., 21(7), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002036. DOI |
7 | Yin, Z. (1988), "A stress-strain model of soil with double yield surfaces", Chinese J. Geotech. Eng. Geology, 10(4), 66-73. |
8 | Yao, Y. (2015), "Advanced UH models for soils", Chinese J. Geotech. Eng., 37(2), 193-217. http://doi.org/10.11779/CJGE201502001. DOI |
9 | Yao, Y., Zhang, B. and Zhu, J. (2012), "Behaviors,constitutive model sand numerical simulation of soils", China Civil Eng. J., 45(3), 135-158. |
10 | Yu, F., Qi, J., Zhang, M., Lai, Y., Yao, X., Liu, Y. and Wu, G. (2016), "Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions", Appl. Thermal Eng., 98, 220-227. http://doi.org/10.1016/j.applthermaleng.2015.11.102. DOI |
11 | Zhu, Z., Kang, G., Ma, Y., Xie, Q., Zhang, D. and Ning, J. (2016), "Temperature damage and constitutive model of frozen soil under dynamic loading", Mech. Mater., 102, 108-116. http://doi.org/10.1016/j.mechmat.2016.08.009. DOI |
12 | Chang, D., Lai, Y. and Yu, F. (2019), "An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage", Acta Geotechnica, 14, 1757-1783. https://doi.org/10.1007/s11440-019-00775-0. DOI |
13 | Lai, Y., Jin, L. and Chang, X. (2009), "Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil", Int. J. Plasticity, 25(6), 1177-1205. http://doi.org/10.1016/j.ijplas.2008.06.010. DOI |
14 | Zhang, X., Ren, K., Sun, H., Xing, Y. and Yang, J. (2018), "Constitutive relationship with double yield surfaces for cinder improved soil under freeze-thaw cycles", Chinese J. Rock Mech. Eng., 37(8), 1916-1923. http://doi.org/10.13722/j.cnki.jrme.2018.0129. DOI |
15 | Lai, Y.M., Xu, X.T., Yu, W.B. and L., Q.J. (2014), "An experimental investigation of the mechanical behavior and a hyperplastic constitutive model of frozen loess", Int. J. Eng. Sci., 84, 29-53. https://doi.org/10.1016/j.ijengsci.2014.06.011. DOI |
16 | Lade, P.V. (1977), "Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces", Int. J. Solids Struct., 13(11), 1019-1035. http://doi.org/10.1016/0020-7683(77)90073-7. DOI |
17 | Yin, Z., LU, H. and Zhu, J. (1996), "The elliptic-parabolic yield surfaces model and its softness matrix", J. Hydraulic Eng., 12(12), 23-28. |
18 | ASTM D2487-11 (2011), Standard practice for classification of soils for engineering purposes (unified soil classification system), ASTM International; PA, USA. http://doi.org/10.1520/D2487-11 DOI |
19 | Chang, D. and Lai, Y. (2018), "A double-yield-surface model for frozen saline sandy soil incorporating particle crushing", Proceedings of China-Europe Conference on Geotechnical Engineering, Vienna, August. https://doi.org/10.1007/978-3-319-97115-5_95. DOI |
20 | Zhang, X., Wang, Q., Li, P. and Wang, R. (2015), "Research on soil dispersion of qian'an soil forest", J. Northeastern U. (Natural Science), 36(11), 1643-1647. http://doi.org/10.3969/j.issn.1005-3026.2015.11.027. DOI |
21 | Hu, W., Cheng, W.C., Wen, S. and Rahman, M.M. (2021), "Effects of chemical contamination on microscale structural characteristics of intact loess and resultant macroscale mechanical properties", CATENA, 203. https://doi.org/10.1016/j.catena.2021.105361. DOI |
22 | Chang, D., Liu, J. and Li, X. (2016), "A constitutive model with double yielding surfaces for silty sand after freeze-thaw cycles", Chinese J. Rock Mech. Eng., 35(3), 623-630. https://doi.org/10.13722/j.cnki.jrme.2015.0505. DOI |
23 | Chen, Z. and Zhu, J. (2016), "A modified ellipse-parabola double yield surfaces model on gravelly soil", J. Fuzhou University (Natural Science Edition), 44(6), 874-880. http://doi.org/10.7631/issn.1000-2243.2016.06.0874. DOI |
24 | Zhao, B., Huang, T., Liu, D., Liu, Y., Wang, X., Liu, S. and Yu, G. (2019), "Study on the mechanical properties test and constitutive model of rock salt", Geomech. Eng., 18(3), 291-298. http://dx.doi.org/10.12989/gae.2019.18.3.291. DOI |
25 | Zhao, Y., Lai, Y., Pei, W. and Yu, F. (2020), "An anisotropic bounding surface elastoplastic constitutive model for frozen sulfate saline silty clay under cyclic loading", Int. J. Plasticity, 129(4), 102668. https://doi.org/10.1016/j.ijplas.2020.102668. DOI |
26 | Zhou, G., Hu, K., Zhao, X., Wang, J. and Lu, G. (2015), "Laboratory investigation on tensile strength characteristics of warm frozen soils", Cold Regions Sci. Technol., 113. http://doi.org/10.1016/j.coldregions.2015.02.003. DOI |
27 | Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Foundation Division, 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458. DOI |
28 | Hu, T., Liu, J., Wang, T. and Yue, Z. (2019), "Effect of freeze-thaw cycles on the deformation characteristics of a silty clay and its constitutive model with double yielding surfaces", Rock Soil Mech., 40(3), 987-997. https://doi.org/10.16285/j.rsm.2017.1829. DOI |
29 | Huang, W., Pu, J. and Chen, Y. (1981), "Hardening rule and yield function for soils", Chinese J. Geotech. Eng., 3, 19-26. |
30 | Asoka, A., Nakano, M. and Noda, T. (2000), "Super loading yield surface concept for highly structured soil behavior", Soil. Foundation., 40(2), 99-110. http://doi.org/10.3208/sandf.40.2_99. DOI |
31 | Bao, S., Wang, Q. and Bao, X. (2013), "Study on dispersive influencing factors of dispersive soil in western Jilin based on grey correlation degree method", Appl. Mech. Mater., 291-294, 1096-1100. http://doi.org/10.4028/www.scientific.net/amm.291-294.1096. DOI |
32 | Chang, D., Liu, J. and Li, X. (2015), "Experimental study on yielding and strength properies of silty sand under freezingthawing cycles", Chinese J. Rock Mech. Eng., 34(8), 1721-1728. http://doi.org/10.13722/j.cnki.jrme.2014.1643. DOI |
33 | Cheng, W.C., Duan, Z., Xue, Z.F. and Wang, L. (2021), "Sandbox modelling of interactions of landslide deposits with terrace sediments aided by field observation", Bulletin Eng. Geology Environ., 80(4), 3711-3731. https://doi.org/10.1007/s10064-021-02144-2. DOI |
34 | Huang, M., Hu, P. and Zhang, H. (2008), "Two-yield surface constitutive model for fine sand in consideration of dilatancy and strain softening", J. Hydraulic Eng., 39(2), 129-136. http://doi.org/10.3321/j.issn:0559-9350.2008.02.001. DOI |
35 | Li, S., Niu, F., Lai, Y., Pei, W. and Yu, W. (2017), "Optimal design of thermal insulation layer of a tunnel in permafrost regions based on coupled heat-water simulation", Appl. Thermal Eng., 110, 1264-1273. http://doi.org/10.1016/j.applthermaleng.2016.09.033. DOI |
36 | Kong, Y., Xu, M. and Song, E. (2017), "An elastic-viscoplastic double-yield-surface model for coarse-grained soils considering particle breakage", Comput. Geotech., 85, 59-70. http://doi.org/10.1016/j.compgeo.2016.12.014. DOI |
37 | Lai, Y., Yang, Y., Chang, X. and Li, S. (2010), "Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics", Int. J. Plasticity, 26(10), 1461-1484. https://doi.org/10.1016/j.ijplas.2010.01.007. DOI |
38 | Li, G. (2006), "Characteristics and development of tsinghua elasto-plastic model for soil", Chinese J. Geotech. Eng., 28(1), 1-10. http://doi.org/10.1016/S1872-1508(06)60035-1. DOI |
39 | Liu, J., Chang, D. and Yu, Q. (2016), "Influence of freeze-thaw cycles on mechanical properties of a silty sand", Eng. Geology, 210, 23-32. https://doi.org/10.1016/j.enggeo.2016.05.019. DOI |
40 | Zhou, C.Y. and Zhu, F.X. (2010), "An elasto-plastic damage constitutive model with double yield surfaces for saturated soft rock", Int. J. Rock Mech. Mining Sci., 47(3), 385-395. http://doi.org/10.1016/j.ijrmms.2010.01.002. DOI |
41 | Bai, X.D., Cheng, W.C., Ong, D.E.L. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. http://doi.org/10.12989/gae.2021.25.1.059. DOI |
42 | Shen, Z. (1980), "The rational form of stress-strain relationship of soils based on elasto-plasticity theory", Chinese J. Geotech. Eng., 2(2), 11-19. |
43 | Sukkarak, R., Pramthawee, P. and Jongpradist, P. (2016), "A modified elasto-plastic model with double yield surfaces and considering particle breakage for the settlement analysis of high rockfill dams", KSCE J. Civil Eng., 21(3), 1-12. http://doi.org/10.1007/s12205-016-0867-9. DOI |
44 | Cui, H., Liu, J., Zhang, L. and Tian, Y. (2015), "A constitutive model of subgrade in a seasonally frozen area with considering freeze-thaw cycles", Rock Soil Mech., 36(08), 2228-2236. http://doi.org/10.16285/j.rsm.2015.08.014. DOI |
45 | Liu, J., Lv, P., Cui, Y. and Liu, J. (2014), "Experimental study on direct shear behavior of frozen soil-concrete interface", Cold Regions Sci. Technol., 104-105, 1-6. http://doi.org/10.1016/j.coldregions.2014.04.007. DOI |
46 | Roscoe, K. and Schofield, A. (1963), "Mechanical behaviour of an idealised 'wet-clay'", Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, October, 47-54. |
47 | Yang, D., Yan, C., Liu, S., Zhang, J. and Hu, Z. (2019), "Stress-strain constitutive model of concrete corroded by saline soil under uniaxial compression", Construct. Building Mater., 213, 665-674. https://doi.org/10.1016/j.conbuildmat.2019.03.153. DOI |
48 | Han, Y., Wang, Q., Wang, N., Wang, J., Zhang, X., Cheng, S. and Kong, Y. (2018), "Effect of freeze-thaw cycles on shear strength of saline soil", Cold Regions Sci. Technol., 154, 42-53. https://doi.org/10.1016/j.coldregions.2018.06.002. DOI |
49 | Li, X. and Dafalias, Y.F. (2000), "Dilatancy for cohesionless soils", Geotechnique, 50, 449-460. http://doi.org/10.1680/geot.2000.50.4.449. DOI |