Browse > Article
http://dx.doi.org/10.12989/gae.2021.27.1.045

Generalized magneto-thermo-microstretch elastic solid with finite element method under the effect of gravity via different theories  

Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University)
Abbas, Ibrahim A. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University)
Abo-Dahab, S.M. (Department of Mathematics, Faculty of Science, South Valley University)
Publication Information
Geomechanics and Engineering / v.27, no.1, 2021 , pp. 45-54 More about this Journal
Abstract
The present paper is aimed at studying the effect of gravity on the general model of the equations of generalized magneto-thermo-micro-stretch for a homogeneous isotropic elastic half-space solid. The problem is in the context of the Green-Lindsay (G-L) theories, as well as the coupled theory (CT). Finite element method is used to obtain the expressions for the displacement components, the force stresses, the temperature, the couple stresses, and the micro-stress distribution. Comparisons are made with the results in the presence and absence of gravity and magnetic field of a particular case for the generalized micropolar thermo-elasticity elastic medium (without micro-stretch constants) between the three theories.
Keywords
finite element method; gravity; magnetic field; thermo-microstretch; thermal relaxation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lata, P. and Kaur, I. (2019) "Axisymmetric thermo-mechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources", Coupled. Syst. Mech., 8(5), 415-437. https://doi.org/10.12989/csm.2019.8.5.415.   DOI
2 Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.   DOI
3 Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Advances, 5(3), 037113. https://doi.org/10.1063/1.4914912.   DOI
4 Marin, M. (1999), "An evolutionary equation in thermo-elastic bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809.   DOI
5 Eringen, A.C. (1971), "Micropolar elastic solids with stretch",Technical Report, Ari Kitabevi Matbassi, Istanbul, Turkey.
6 Othman, M.I.A. (2002), "Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two-dimensional generalized thermo- elasticity", J. Therm. Stresses, 25(11), 1027-1045. https://doi.org/10.1080/01495730290074621.   DOI
7 Othman, M.I.A. and Abbas, I.A. (2014), "Effect of rotation on plane waves in generalized thermo-microstretch elastic solid comparison of different theories using finite element method", Can. J. Phys., 92(10), 1269-1277. https://doi.org/10.1139/cjp-2013-0482.   DOI
8 Othman, M.I.A., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl. Math. Model., 65, 535-548. https://doi.org/10.1016/j.apm.2018.08.032   DOI
9 Othman, M.I.A., Alharbi, A.M. and Al-Autabi, A.M.K. (2020), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomech. Eng., 21(5), 447-459. https://doi.org/10.12989/gae.2020.21.5.447.   DOI
10 Ramezanizadeh, M., Nazari, M.A., Ahmadi, M.H. and Chau, K.W. (2019), "Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger", Eng. Appl. Comput. Fluid Mech., 13(1), 40-47. https://doi.org/10.1080/19942060.2018.1518272.   DOI
11 Yu, R.L., Liang, R., Zhou, W., Wang, S., Yue, S. and Cui, B. (2020), "Stress analysis of a filter screen based on dimensional analysis and finite element analysis", Eng. Appl. Comput. Fluid Mech., 14(1), 168-179. https://doi.org/10.1080/19942060.2019.1665588.   DOI
12 Green, A.E. and Laws, N. "On the entropy production inequality", Arch. Rat. Mech. Anal., 45(1), 47-53.   DOI
13 De Cicco, S. and Nappa, L. (1999), "On the theory of thermosmicrostretch elastic solids", J. Therm. Stresses, 22, 565-580. https://doi.org/10.1080/014957399280751.   DOI
14 Eringen, A.C. (1990), "Theory of thermo-microstretch elastic solids", Int. J. Eng. Sci., 28(12), 1291-1301. https://doi.org/10.1016/0020-7225(90)90076-U.   DOI
15 Toh, W., Tan, L.B., Tse, K.M., Raju, K., Lee, H.P. and Tan, V.B.C. (2018), "Numerical evaluation of buried composite and steel pipe structures under the effect of gravity", Steel Compos. Struct., 26(1), 55-66. http://doi.org/10.12989/scs.2018.26.1.055.   DOI
16 Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2, 1-7. https://doi.org/10.1007/BF00045689.   DOI
17 Elnagar, A.M., Abd-Alla, A.M. and Ahmed, S.M. (1994), "Rayleigh waves in a magneto-elastic initially stresses conducting medium with the gravity field", B. Cal. Math. Soc. 86, 51-56.
18 Jain, K., Kalkal, K.K. and Deswal, S. (2018), "Effect of heat source and gravity buildings under parametric fires", Struct. Eng. Mech., 68(2), 215-226. http://doi.org/10.12989/sem.2018.68.2.215.   DOI
19 Kaur, I. and Lata, P. (2020) "Axisymmetric deformation in transversely isotropic magneto-thermo-elastic solid with Green-Naghdi III due to inclined load", Int. J. Mech. Mater. Eng., 15(3), 1-9. https://doi.org/10.1186/s40712-019-0111-8.   DOI
20 Kumar, K.V., Saravanan, T.J., Sreekala, R., Gopalakrishnan, N. and Mini, K.M. (2017), "Structural damage detection through longitudinal wave propagation using spectral finite element method", Steel Compos. Struct., 12(1), 161-183. http://doi.org/10.12989/gae.2017.12.1.161.   DOI
21 Lata, P. and Kaur, H. (2020), "Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation", Geomech. Eng., 21(5), 461-469. https://doi.org/10.12989/gae.2020.21.5.461.   DOI
22 Lata, P. and Singh, S. (2020), "Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force", Geomech. Eng., 22(2), 109-117. https://doi.org/10.12989/gae.2020.22.2.109.   DOI
23 Lin, Y.H. and Jiang, Y. (2020), "Finite element simulationfor multiphase fluids with different densities using an energy-law-preserving method", Eng. Appl. Comput. Fluid Mech., 14(1), 642-654.https://doi.org/10.1080/19942060.2020.1756413.   DOI
24 Iesan, D. and Nappa, L. (2001), "On the plane strain of micro-stretch elastic solids", Int. J. Eng. Sci., 39, 1815-1835. https://doi.org/10.1016/S0020-7225(01)00017-9.   DOI
25 Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.   DOI
26 Bofill, F. and Quintanilla, R. (1995), "Some qualitative results for the linear theory of thermo-microstretch elastic solids", Int. J. Eng. Sci., 33, 2115-2125.   DOI
27 De Cicco, S. and Nappa, L. (2000), "Some results in the linear theory of thermo-micro-stretch elastic solids", J. Math. Mech., 5(4), 467-482.
28 Eftekhari, S.A. (2018), "A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions", Steel Compos. Struct., 28(6), 655-670. http://doi.org/10.12989/scs.2018.28.6.655.   DOI
29 Ghalndari, M., Bornassi, S., Shamshirband, S., Mosavi, A. and Chau, K.W. (2019), "Investigation of submerged structures' flexibility on sloshing frequency using a boundary element method and finite element analysis", Eng. Appl. Comput. Fluid Mech., 13(1), 519-528. https://doi.org/10.1080/19942060.2019.1619197   DOI
30 Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020), "Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 1-12. https://doi.org/10.3389/fphy.2020.00095.   DOI
31 Khan, A.A., Bukhari, S.R. and Marin, M. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transfer Res., 50(11), 1061-1080. http://doi.org/10.1615/HeatTransRes.2018028397.   DOI
32 Salih, S.Q., Aldlemy, M.S., Rasani, M.R. and Ariffin, A.K. (2019), "Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method", Eng. Appl. Comput. Fluid Mech., 13(1), 860-877. https://doi.org/10.1080/19942060.2019.1652209.   DOI
33 Kaur, I., Lata, P. and Singh, K. (2020) "Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures", Int. J. Mech. Mater. Eng., 15(10), 1-13. https://doi.org/10.1186/s40712-020-00122-2.   DOI
34 Othman, M.I.A. and Song, Y.Q. (2009), "The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermoelasticity half-space.under three theories", Multi. Model. Mater. Struct., 5(1), 43-48. https://doi.org/10.1108/15736105200900003.   DOI
35 Othman, M.I.A. and Abd-Elaziz, E.M. (2019), "Effect of initial stress and hall current on a magneto-thermoelastic porous medium with micro-temperatures", Ind. J. Phys., 93(4), 475-485. https://doi.org/10.1007/s12648-018-1313-2.   DOI
36 Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2013), The Finite Element Method: Its Basis and Fundamentals, Seventh Edition, Elsevier.
37 Anya, A.I. and Khan, A. (2019), "Reflection and propagation of plane waves at free surfaces of a rotating micropolar fiber-reinforced medium with voids", Geomech. Eng., 18(6), 605-614. https://doi.org/10.12989/gae.2019.18.6.605.   DOI
38 Biot, M. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351.   DOI
39 Eringen, A.C. (1999), Micro-continuum Field Theories I: Foundation and Solids, Springer-Verlag, New York, U.S.A., Berlin, Heidelberg, Germany.
40 Abbas, I.A. and Othman, M.I.A. (2012), "Plane waves in generalized thermo-microstretch elastic solid with thermal relaxation using finite element method", Int. J. Thermophys., 33(12), 2407-2423. https://doi.org/10.1007/s10765-012-1340-8.   DOI
41 Baghban, A., Sasanipour, J., Pourfayaz, F. and Ahmadi, M.H. (2019), "Towards experimental and modeling study of heat transfer performance of water-SiO2 nanofluid in quadrangular cross-section channels", Eng. Appl. Comput. Fluid Mech., 13(1), 453-469. https://doi.org/10.1080/19942060.2019.1599428.   DOI
42 Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413-430. https://doi.org/10.3390/sym11030413.   DOI