Browse > Article
http://dx.doi.org/10.12989/gae.2021.26.5.453

Modified pseudo-dynamic analysis of rigid gravity retaining wall with cohesion-less backfill and uniform surcharge  

Srikar, Godas (Department of Civil Engineering, Indian Institute of Technology Roorkee)
Mittal, Satyendra (Department of Civil Engineering, Indian Institute of Technology Roorkee)
Publication Information
Geomechanics and Engineering / v.26, no.5, 2021 , pp. 453-464 More about this Journal
Abstract
An increase in failure of geotechnical structures is a significant concern in seismic-prone areas. The purpose of the study is to propose a closed-form solution for the seismic active pressure acting on a retaining wall with backfill subjected to uniform surcharge considering the propagation of both shear and primary waves. The proposed study considers the damping ratio by assuming soil as Kelvin-Voigt material. The proposed methodology satisfies boundary conditions at the surface of the backfill due to surcharge. The deduced acceleration profile is considered for the estimation of inertial forces due to critical wedge and surcharge. The study reveals that the maximum seismic active pressure coefficient occurs when the normalized input frequency is equal to π/2. It is observed that the surcharge magnitude does not affect both horizontal and vertical acceleration profiles. The parametric study presents the influence of various static and dynamic properties of the backfill soil on the distribution of seismic pressure acting on the wall. The coefficient of earth pressure obtained from the proposed method is in good agreement with the existing pseudo-static methods. It is concluded that the effect of shear wave propagation on earth pressure is relatively dominant as compared to that of primary wave propagation.
Keywords
active pressure; damping ratio; modified pseudo-dynamic analysis; primary wave velocity; shear wave velocity; surcharged backfill;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Santhoshkumar, G and Ghosh, P. (2020), "Seismic stability of a broken-back retaining wall using adaptive collapse mechanism", Int. J. Geomech., 20(9), 04020154. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001786   DOI
2 Shukla, S.K. (2013), "Seismic active earth pressure from the sloping c-ϕ soil backfills", Indian Geotech. J., 43(3), 274-279. https://doi.org/10.1007/s40098-013-0044-8.   DOI
3 Taravati, H. and Ardakani, A. (2018), "The numerical study of seismic behavior of gravity retaining wall built near rock face", Earthq. Struct., 14(2), 179-186. https://doi.org/10.12989/eas.2018.14.2.179.   DOI
4 Veletsos, A. and Younan, A.H. (1997), "Dynamic response of cantilever retaining walls", J. Geotech. Geoenviron. Eng., 123(2), 161-172. https://doi.org/10.1061/(ASCE)1090- 0241(1997)123:2(161).   DOI
5 Qin, C. and Chian, S.C. (2018), "External stability of reinforced soil walls under seismic conditions", Comput. Geotech., 102, 196-205. https://doi.org/10.1680/gein.2007.14.4.211.   DOI
6 Bellezza, I. (2014), "A new pseudo-dynamic approach for seismic active soil thrust", Geotech. Geol. Eng., 32(2), 561-576. https://doi.org/10.1007/s10706-014-9734-y.   DOI
7 Pain, A., Choudhury, D. and Bhattacharyya, S.K. (2017), "Seismic rotational stability of gravity retaining walls by modified pseudo-dynamic method", Soil Dyn. Earthq. Eng., 94, 244-253. https://doi.org/10.1016/j.soildyn.2017.01.016.   DOI
8 Giarlelis, C. and Mylonakis, G. (2011), "Interpretation of dynamic retaining wall model tests in light of elastic and plastic solutions", Soil Dyn. Earthq. Eng., 31(1), 16-24. https://doi.org/10.1016/j.soildyn.2010.07.002.   DOI
9 Aminpour, M.M., Maleki, M., and Ghanbari, A. (2017), "Investigation of the effect of surcharge on behavior of soil slopes", Geomech. Eng., 13(4), 653-669. https://doi.org/10.12989/gae.2017.13.4.653   DOI
10 Annapareddy, V.R. and Pain, A. (2019), "Effect of straindependent dynamic properties of backfill and foundation soil on the external stability of geosynthetic reinforced waterfront retaining structure subjected to harmonic motion", Appl. Ocean Res., 91, 101899, https://doi.org/10.1016/j.apor.2019.101899.   DOI
11 Cakir, T. (2014b), "Influence of wall flexibility on dynamic response of cantilever retaining walls", Struct. Eng. Mech., 49(1), 1-22, http://doi.org/10.12989/sem.2014.49.1.001.   DOI
12 Cakir, T. (2017), "Assessment of effect of material properties on seismic response of a cantilever wall", Geomech. Eng., 13(4), 601-619, https://doi.org/10.12989/gae.2017.13.4.601.   DOI
13 altabiano, S., Cascone, E. and Maugeri, M. (2000), "Seismic stability of retaining walls with sur- charge", Soil Dyn. Earthq. Eng., 20(5-8), 469-476. https://doi.org/10.1016/S0267- 7261(00)00093-2.   DOI
14 Choudhury, D. and Nimbalkar, S.S. (2006), "Pseudo-dynamic approach of seismic active earth pressure behind retaining wall", Geotech. Geol. Eng., 24(5), 1103. https://doi.org/10.1007/s10706- 005-1134-x   DOI
15 Seed, H and Idriss, I.M. (1970), "Soil moduli and damping factors for dynamic response analyses", Report No. Centre report UCB/EERC-70/10, Earthquake Engineering Research Center, University of California, Berkeley, California, U.S.A.
16 Alper Kamiloglu, H., and Sadoglu, E. (2019), "Experimental and theoretical investigation of short-and long-heel cases of cantilever retaining walls in active state", Int. J. Geomech., 19(5), 04019023. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001389   DOI
17 Psarropoulos, P.N., Klonaris, G. and Gazetas, G. (2005), "Seismic earth pressures on rigid and flexible retaining walls", Soil Dyn. Earthq. Eng., 25(7-10), 795-809. https://doi.org/10.1016/j.soildyn.2004.11.020.   DOI
18 Richards Jr, R. and Elms, D.G., (1979), "Seismic behavior of gravity retaining walls", J. Geotech. Geoenviron. Eng., 105(4), 449-464. https://doi.org/10.1061/AJGEB6.0000783.   DOI
19 Santhoshkumar, G. and Ghosh, P. (2018), "Seismic passive earth pressure on an inclined cantilever retaining wall using method of stress characteristics-A new approach", Soil Dyn. Earthq. Eng., 107, 77-82. https://doi.org/10.1016/j.soildyn.2018.01.021.   DOI
20 Sahoo, J.P. and Ganesh, R. (2017), "Kinematic limit analysis approach for seismic active earth thrust co-efficients of cohesive-frictional backfill", Int. J. Geomech., 18(1), 04017123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001030.   DOI
21 Srikar, G. and Mittal, S. (2020), "Seismic analysis of retaining wall subjected to surcharge: A modified pseudodynamic approach", Int. J. Geomech., 20(9), 06020022. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001780.   DOI
22 Wang, J.J., Zhang, H.P., Chai, H.J. and and Zhu, J.G. (2008), "Seismic passive resistance with vertical seepage and surcharge", Soil Dyn. Earthq. Eng., 28(9), 728-737. https://doi.org/10.1016/j.soildyn.2007.10.004.   DOI
23 di Santolo, A.S. and Evangelista, A. (2011), "Dynamic active earth pressure on cantilever retaining walls", Comput. Geotech., 38(8), 1041-1051, https://doi.org/10.1016/j.compgeo.2011.07.015.   DOI
24 Veletsos, A. and Younan, A.H. (1994a), "Dynamic modeling and response of soil-wall systems", J. Geotech. Eng., 120(12), 2155-2179. https://doi.org/10.1061/(ASCE)0733- 9410(1994)120:12(2155).   DOI
25 Steedman, R.S. and Zeng, X. (1990), "The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall", Geotechnique, 40(1), 103-112. https://doi.org/10.1680/geot.1990.40.1.103.   DOI
26 Ghanbari, A., and Ahmadabadi, M. (2010), "Pseudo-dynamic active earth pressure analysis of inclined retain- ing walls using horizontal slices method", Scientia Iranica Trans. A Civ. Eng., 17(2), 118-130.
27 Madabhushi, S.P.G. and Zeng, X. (2007), "Simulating seismic response of cantilever retaining walls", J. Geotech. Geoenviron. Eng., 133(5), 539-549. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(539).   DOI
28 Okabe, S. (1924), "General theory on earth pressure and seismic stability of retaining wall and dam", Proc. Civ. Eng. Soc., 10(6), 1277-1323.
29 Veletsos, A. and Younan, A.H. (1994b), "Dynamic soil pressures on rigid vertical walls", Earthq. Eng. Struct. Dyn., 23(3), 275-301. https://doi.org/10.1002/eqe.4290230305.   DOI
30 Zhang, D.B., Jiang, Y. and Yang, X.L. (2019), "Estimation of 3D active earth pressure un- der nonlinear strength condition", Geomech. Eng., 17(6), 515-525. https://doi.org/10.12989/gae.2019.17.6.515   DOI
31 Choudhury, D. and Rao, K.S.S (2002), "Seismic passive resistance in soils for negative wall friction", Can. Geotech. J., 39(4), 971-981, https://doi.org/10.1139/t02-023.   DOI
32 Baziar, M. H., Shahnazari, H. and Rabeti Moghadam, M. (2013), "Sliding stability analysis of gravity retaining walls using the pseudo-dynamic method", Proc. Inst. Civ. Eng. Geotech. Eng., 166(4), 389-398, https://doi.org/10.1680/geng.10.00036.   DOI
33 Cakir, T. (2014a), "Backfill and subsoil interaction effects on seismic behavior of a cantilever wall", Geomech. Eng., 6(2), 117-138. http://doi.org/10.12989/gae.2014.6.2.117.   DOI
34 Cakir, T. and Livaoglu, R. (2013), "Experimental analysis on FEM definition of backfill-rectangular tank-fluid system", Geomech. Eng., 5(2), 165-185, https://doi.org/10.12989/gae.2013.5.2.165.   DOI
35 Das, B.M. (1993), Principles of Soil Dynamics, Kent Publishing Company, Boston, Massachusetts, U.S.A.
36 Evangelista, A., di Santolo, A.S. and Simonelli (2010), "Evaluation of pseudostatic active earth pressure coefficient of cantilever retaining walls", Soil Dyn. Earthq. Eng., 30(11), 1119-1128. https://doi.org/10.1016/j.soildyn.2010.06.018.   DOI
37 Gazetas, G., Psarropoulos, P. N., Anastasopoulos, I. and Gerolymos, N. (2004), "Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation", Soil Dyn. Earthq. Eng., 24(7), 537-550. https://doi.org/10.1016/j.soildyn.2004.02.005.   DOI
38 Ghosh, P. (2008), "Seismic active earth pressure behind a nonvertical retaining wall using pseudo-dynamic analysis", Can. Geotech. J., 45(1), 117-123. https://doi.org/10.1139/T07-071   DOI
39 Greco, V. (2001), "Active earth thrust on cantilever walls with short heel", Can. Geotech. J., 38(2), 401-409. https://doi.org/10.1139/t00-094.   DOI
40 Ghosh, S. (2010), "Pseudo-dynamic active force and pressure behind battered retaining wall sup- porting inclined backfill", Soil Dyn. Earthq. Eng., 30(11), 1226-1232. https://doi.org/10.1016/j.soildyn.2010.05.003.   DOI
41 Kolathayar, S and Ghosh, P. (2009), "Seismic active earth pressure on walls with bilinear backface using pseudo-dynamic approach", Comput. Geotech., 36(7), 1229-1236. https://doi.org/10.1016/j.compgeo.2009.05.015.   DOI
42 Hu, H. and Huang, Y. (2019), "A dynamic reliability approach to seismic vulnerability analysis of earth dams", Geomech. Eng., 18(6), 661-668, https://doi.org/10.12989/gae.2019.18.6.661.   DOI
43 Huang, D. and Liu, J. (2016), "Upper-bound limit analysis on seismic rotational stability of retaining wall", KSCE J. Civ. Eng., 20(7), 2664-2669. https://doi.org/10.1007/s12205-016-0471-z.   DOI
44 Kloukinas, P., di Santolo, A.S., Penna, A., Dietz, M., Evangelista, A., Simonelli, A.L., Taylor, C. and Mylonakis, G. (2015), "Investigation of seismic response of cantilever retaining walls: Limit analysis vs shaking table testing", Soil Dyn. Earthq. Eng., 77, 432-445. https://doi.org/10.1016/j.soildyn.2015.05.018   DOI
45 Kumar, J. and Chitikela, S (2002), "Seismic passive earth pressure coefficients using the method of characteristics", Can. Geotech. J., 39(2), pp. 463-471, https://doi.org/10.1139/t01-103.   DOI
46 Motlagh, A.T., Ghanbari, A., Maedeh, P.A. and Wu, W. (2018), "A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes", Earthq. Struct., 15(6), 687-699. https://doi.org/10.12989/eas.2018.15.6.687.   DOI
47 Nimbalkar, S., and Choudhury, D. (2007), "Sliding stability and seismic design of retaining wall by pseudo- dynamic method for passive case", Soil Dyn. Earthq. Eng., 27(6), 497-505. https://doi.org/10.1016/j.soildyn.2006.11.006.   DOI
48 Motta, E. (1994), "Generalized Coulomb active-earth pressure for distanced surcharge", J. Geotech. Eng., 120(6), 1072-1079. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1072).   DOI
49 Kamiloglu, H.A. and Sadoglu, E. (2017), "Active earth thrust theory for horizontal granular backfill on a cantilever wall with a short heel", Int. J. Geomech., 17(8), 04017018. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000886   DOI
50 Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Pearson Education India.
51 Mononobe, N. and Matsuo, H. (1929), "On the determination of earth pressures during earthquakes", Proceedings of the World Engineering Congress, Tokyo, Japan.
52 Mylonakis, G., Kloukinas, P. and Papantonopoulos, C. (2007), "An alternative to the Mononobe-Okabe equations for seismic earth pressures", Soil Dyn. Earthq. Eng., 22(10), 947-969. https://doi.org/10.1016/j.soildyn.2007.01.004.   DOI
53 Pain, A., Annapareddy, V.S. and Nimbalkar, S. (2018), "Seismic active thrust on rigid retaining wall using strain dependent dynamic properties", Int. J. Geomech., 18(12), 06018034. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001331.   DOI
54 Greco, V. (2006), "Active thrust due to backfill subject to lines of surcharge", J. Geotech. Geoenviron. Eng., 132(2), 269-271. https://doi.org/10.1061/(ASCE)1090- 0241(2006)132:2(269).   DOI
55 Choudhury, D., and Nimbalkar, S. (2007), "Seismic rotational displacement of gravity walls by pseudo- dynamic method: Passive case", Soil Dyn. Earthq. Eng., 27(3), 242-249. https://doi.org/10.1016/j.soildyn.2006.06.009.   DOI
56 Cakir, T. (2013), "Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil-structure interaction", Soil Dyn. Earthq. Eng., 45, 96-111. https://doi.org/10.1016/j.soildyn.2012.11.008.   DOI