Browse > Article
http://dx.doi.org/10.12989/gae.2021.26.5.441

Recognition and prevention of rockfall vulnerable area in open-pit mines based on slope stability analysis  

Zhu, Chun (School of Earth Sciences and Engineering, Hohai University)
He, Manchao (State Key Laboratory for Geomechanics & Deep Underground Engineering)
Tao, Zhigang (State Key Laboratory for Geomechanics & Deep Underground Engineering)
Meng, Qingxiang (Research Institute of Geotechnical Engineering, Hohai University)
Zhang, Xiaohu (School of Civil Engineering, Guizhou University of Engineering Science)
Publication Information
Geomechanics and Engineering / v.26, no.5, 2021 , pp. 441-452 More about this Journal
Abstract
Because of a wide distribution range, sudden occurrence, and high frequency of rockfall disasters on the slope of open-pit mines, it is difficult to effectively control the rockfall disasters in open-pit mines. The slope stabilities of slopes of 13 typical sections in the Changshanhao open-pit mine were calculated using 3DEC software, and the vulnerable area of each slope section was determined. These areas were analyzed as high-incidence areas of rockfalls. Combined with the field geological conditions, the slopes of the W6 and W8 sections where rockfall disasters easily occur were selected to study the motion characteristics of rockfalls, including the trajectory, landing distribution, bouncing height, and total kinetic energy using Rocfall software. According to different distribution characteristics of high-incidence areas of rockfall disasters on a slope, the gravel cushion and protective net methods are proposed to control rockfall disasters. The effectiveness and reasonableness of prevention methods were validated using numerical simulation, proving a good basis for scientific prevention and control of rockfall disasters in open-pit mines.
Keywords
gravel cushion; rockfalls; slope vulnerable area; stability analysis; 3DEC software;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tao, Z.G., Zhu, C., He, M.C. and Liu, K.M. (2020), "Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine", Geomech. Geophys. Geo. 6, 36. https://doi.org/10.1007/s40948-020-00159-9.   DOI
2 Maerz, N.H., Youssef, A.M., Pradhan, B. and Bulkhi, A. (2015), "Remediation and mitigation strategies for rock fall hazards along the highways of Fayfa Mountain, Jazan Region, Kingdom of Saudi Arabia", Arab. J. Geosci., 8(5), 2633-2651. https://doi.org/10.1007/s12517-014-1423-x.   DOI
3 Megan, V.V., Hutchinson, D.J., Bonneau, D.A., Sala, Z., Ondercin, M. and Lato, M. (2018), "Combining temporal 3D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors", Nat. Hazard. Earth. Syst., 18(8), 2295-2308. https://doi.org/10.5194/nhess-18-2295-2018.   DOI
4 Rosa, M.M., Inmaculada, G.M., Paola, R., Gerardo, H., Roberto, S., Joan, R., Raul, A. and Federica, F. (2016), "Calibration and validation of rockfall modelling at regional scale: application along a roadway in Mallorca (Spain) and organization of its management", Landslides, 13(4), 751-763. https://doi.org/10.1007/s10346-015-0602-5.   DOI
5 Saroglou, H., Marinos, V., Marinos, P. and Tsiambaos, G. (2012), "Rockfall hazard and risk assessment: An example from a high promontory at the historical site of Monemvasia, Greece", Nat. Hazard. Earth. Syst., 12(6), 1823-1836. https://doi.org/10.5194/nhess-12-1823-2012.   DOI
6 Spadari, M., Giacomini, A., Buzzi, O., Fityus, S. and Giani, G.P. (2012), "In situ rock fall tests in New South Wales, Australia", Int. J. Rock Mech. Min. Sci., 49, 84-93. https://doi.org/10.1016/j.ijrmms.2011.11.013.   DOI
7 Toe, D., Mentani, A., Govoni, L., Bourrier, F., Gottardi, G. and Lambert, S. (2018), "Introducing Meta-models for a more efficient hazard mitigation strategy with rockfall protection barriers", Rock Mech. Rock Eng., 51(4), 1097-1109. https://doi.org/10.1007/s00603-017-1394-9.   DOI
8 Tan, D.Y., Yin, J.H., Qin, J.Q., Zhu, Z.H. and Feng, W.Q. (2018), "Large-scale physical modeling study on the interaction between rockfall and flexible barrier", Landslides, 15(12), 2487-2497. https://doi.org/10.1007/s10346-018-1058-1.   DOI
9 Andrew, M. and Oldrich, H. (2017), "Theory and calibration of the Pierre 2 stochastic rock fall dynamics simulation program", Can. Geotech. J., 54(1), 18-30. https://doi.org/10.1139/cgj-2016-0039.   DOI
10 Fanos, A.M. and Pradhan, B. (2019), "A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS", Catena, 172, 435-450. https://doi.org/10.1016/j.catena.2018.09.012.   DOI
11 Buzzi, O., Giacomini, A. and Spadari, M. (2012), "Laboratory investigation on high values of restitution coefficients", Rock Mech. Rock Eng., 45, 35-43. https://doi.org/10.1007/s00603-011-0183-0.   DOI
12 Anna, E., Klaus, T., Anna, G. and Corinna, W. (2017), "Efficient discrete modelling of composite structures for rockfall protection", Comput. Geotech., 87, 99-114. https://doi.org/10.1016/j.compgeo.2017.02.005.   DOI
13 Akin, M., Dincer, I., Ok, A.O., Orhan, A., Akin, M.K. and Topal, T. (2021), "Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing", Eng. Geol., 283, 106001. https://doi.org/10.1016/j.enggeo.2021.106001.   DOI
14 Bourrier, F., Dorren, L., Nicot, F., Berger, F. and Darve, F. (2009), "Toward objective rockfall trajectory simulation using a stochastic impact model", Geomorphology, 110(3), 68-79. https://doi.org/10.1016/j.geomorph.2009.03.017.   DOI
15 Gischig, V.S., Hungr, O., Mitchell, A. and Bourrier, F. (2014), "Pierre3D: A 3D stochastic rockfall simulator based on random ground roughness and hyperbolic restitution factors", Can. Geotech. J., 52(9), 1360-1373. https://doi.org/10.1139/cgj-2014-0312.   DOI
16 Yu, Z.X., Luo, L.R., Liu, C., Guo, L.P., Qi, X. and Zhao, L. (2021), "Dynamic response of flexible rockfall barriers with different block shapes", Landslides, 1-17. https://doi.org10.1007/s10346-021-01658-w   DOI
17 Bhatti, A.Q. (2018), "Computational modeling of energy dissipation characteristics of expanded polystyrene (EPS) cushion of reinforce concrete (RC) bridge girder under rockfall impact", Int. J. Civ. Eng., 16(11), 1-8. https://doi.org/10.1007/s40999-018-0304-1.   DOI
18 Bertolo, P., Oggeri, C. and Peila, D. (2009), "Full-scale testing of draped nets for rock fall protection", Can. Geotech. J., 46(3), 306-317. https://doi.org/10.1139/T08-126.   DOI
19 Gao, G. and Meguid, M.A. (2018a.), "Modeling the impact of a falling rock cluster on rigid structures", Int. J. Geomech., 18(2), 1-15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001045.   DOI
20 Gao, G. Meguid, M.A. (2018b), "On the role of sphericity of falling rock clusters- Insights from experimental and numerical investigations", Landslides, 15(2), 219-232. https://doi.org/10.1007/s10346-017-0874-z   DOI
21 Hu, J., Li, S.C., Shi, S.S., Li, L.P., Zhang, Q., Liu, H.L. and He, P. (2018), "Experimental study on parameters affecting the runout range of rockfall", Adv. Civ. Eng., 1-9. https://doi.org/10.1155/2018/4739092.   DOI
22 Zhu, C., He, M.C., Yin, Q. and Zhang, X.H. (2021b), "Numerical simulation of rockfalls colliding with a gravel cushion with varying thicknesses and particle sizes", Geomech. Geophys. Geo., 7(1), 1-15. https://doi.org/10.1007/s40948-020-00203-8.   DOI
23 Xu, H., Gentilini, C., Yu, Z.X., Qi, X. and Zhao, S.C. (2018), "An energy allocation based design approach for flexible rockfall protection barriers", Eng. Struct., 173, 831-852. https://doi.org/10.1016/j.engstruct.2018.07.018.   DOI
24 Yilmaz, I., Yildirim, M. and Keskin, I. (2008), "A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software", B. Eng. Geol. Environ., 67, 547-554. https://doi.org/10.1007/s10064-008-0174-x.   DOI
25 Zhang, G., Tang, H., Xiang, B., Karakus, B. and Wu J.P. (2015), "Theoretical study of rockfall impacts based on logistic curves", Int. J. Rock Mech. Min. Sci., 78, 133-143. https://doi.org/10.1016/j.ijrmms.2015.06.001.   DOI
26 Zhu, C., Wang D.S., Xia, X., Tao, Z.G., He, M.C. and Cao, C. (2018), "The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts", Nat. Hazard. Earth. Syst., 18(6), 1811-1823. https://doi.org/10.5194/nhess-18-1811-2018.   DOI
27 Zhu, C., He, M.C., Karakus, M., Zhang, X.H. and Guo, Z. (2021a), "The collision experiment between rolling stones of different shapes and protective cushion in open-pit mines", J. Mt. Sci. Eng., 18(5), 1391-1403. https://doi.org/10.1007/s11629-020-6380-0.   DOI
28 Zhu, C., He, M.C., Karakus, M., Zhang, X.H. and Tao, Z.G. (2021c), "Numerical simulations of the failure process of anaclinal slope physical model and control mechanism of negative Poisson's ratio cable", B. Eng. Geol. Environ., 80, 3365-3380. https://doi.org/10.1007/s10064-021-02148-y.   DOI
29 Zhu, C., Tao, Z., Yang, S. and Zhao, S. (2019), "V shaped gully method for controlling rockfall on high-steep slopes in China", B. Eng. Geol. Environ., 78, 2731-2747. https://doi.org/10.1007/s10064-018-1269-7.   DOI
30 James, G. (2015), "Rock-shape and its role in rockfall dynamics", Ph.D. Dissertation, Durham University, Durham., U.K.
31 Zhao, P., Xie, L.Z., Li, L.P., Liu, Q. and Yuan, S. (2018), "Large-scale rockfall impact experiments on a RC rock-shed with a newly proposed cushion layer composed of sand and EPE", Eng. Struct., 175, 386-398. https://doi.org/10.1016/j.engstruct.2018.08.046.   DOI
32 Zhu, C., He, M.C., Karakus, M., Cui, X.B. and Tao, Z.G. (2020), "Investigating toppling failure mechanism of anti-dip layered slope due to excavation by physical modelling", Rock Mech. Rock Eng., 53(11), 5029-5050. https://doi.org/10.1007/s00603-020-02207-y.   DOI
33 Koo, R.C.H., Kwan, J.S.H., Lam, C., Ng, C.W.W., Yiu, J., Choi, C.E., Ng, A.K.L., Ho, K.K.S. and Pun, W.K. (2017), "Dynamic response of flexible rockfall barriers under different loading geometries", Landslides, 14(3), 905-916. https://doi.org/10.1007/s10346-016-0772-9.   DOI
34 Koleini, M., Van, R.J.L. (2011), "Falling rock hazard index: A case study from the Marun Dam and power plant, south-western Iran", B. Eng. Geol. Environ., 70(2), 279-290. https://doi.org/10.1007/s10064-010-0327-6.   DOI
35 Li, L.P., Sun, S.Q., Li, S.C., Zhang, Q.Q., Hu, C. and Shi, S.S. (2016), "Coefficient of restitution and kinetic energy loss of Rockfall impacts", KSCE J. Civ. Eng., 20(6), 2297-2307. https://doi.org/10.1007/s12205-015-0221-7.   DOI
36 Lambert, S. and Kister, B. (2018), "Efficiency assessment of existing rockfall protection embankments based on an impact strength criterion", Eng. Geol., 243, 1-9. https://doi.org/10.1016/j.enggeo.2018.06.008.   DOI
37 Laura, C.J., Elena, B.F., Daniel, C.F. and Diego, F. (2018) "Use of explicit FEM models for the structural and parametrical analysis of rockfall protection barriers", Eng. Struct., 166, 212-216. https://doi.org/10.1016/j.engstruct.2018.03.064.   DOI
38 Tao, Z.G., Geng, Q., Zhu, C., He, M.C., Cai, H., Pang, S.H. and Meng, X.Z. (2019), "Investigation of the mechanical mechanisms of large-scale toppling failure on counter-inclined rock slopes", J. Geophys. Eng., 16, 541-558. https://doi.org/10.1093/jge/gxz020.   DOI
39 Lam, C., Yong, A.C.Y., Kwan, J.S.H. and Lam, N.T.K. (2018), "Overturning stability of L-shaped rigid barriers subjected to rockfall impacts", Landslides., 15(7), 1347-1357. https://doi.org/10.1007/s10346-018-0957-5.   DOI