Browse > Article
http://dx.doi.org/10.12989/gae.2021.26.3.253

Development of orthotropic Winkler-like model for rotating cylindrical shell: Stability analysis  

Khadimallah, Mohamed Amine (Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Yahya, Ahmad (Nuclear Engineering Department, King Abdulaziz University)
Elimame, Elaloui (Laboratory of Materials Applications in Environment, Water and Energy LR21ES15, Faculty of Sciences, University of Gafsa)
Tounsi, Abdelouahed (Yonsei Frontier Lab, Yonsei University)
Publication Information
Geomechanics and Engineering / v.26, no.3, 2021 , pp. 253-260 More about this Journal
Abstract
Vibration investigation of rotating functionally graded cylindrical shells with fraction laws is studied here. Shell motion equations are framed according to the orthotropic Winkler-like model. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. The influence of the polynomial, exponential and trigonometric fraction laws is investigated with simply supported condition. Also the variations have been plotted against the circumferential wave mode, length-to-radius and height-to-radius ratio. Moreover, backward and forward frequency pattern is observed increasing and decreasing for the various position of angular speed. The frequency first increases and gain maximum value for circumferential wave number. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. The frequencies of trigonometric law is less than remaining laws.
Keywords
circumferential wave mode; FGM; length-to-radius ratio; simply supported; Winkler-like model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Darvishgohari, H., Zarastvand, M., Talebitooti, R. and Shahbazi, R. (2019), "Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers", J. Sandw. Struct. Mater., 1099636219896251. https://doi.org/10.1177/1099636219896251.   DOI
2 Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.   DOI
3 Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191, 75-91. http/10.1007/s00707-006-0438-0.   DOI
4 Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5.   DOI
5 Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acous., 116(1), 198-202. https://doi.org/10.1115/1.2930412.   DOI
6 Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.   DOI
7 Penzes, R.L.E. and Kraus H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.   DOI
8 Sharma, P., Singh, R. and Hussain, H. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. https://doi.org/10.1177/0954406219888234.   DOI
9 Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", J. Eng. Industr., 93, 1229-1232. https://doi.org/10.1115/1.3428067.   DOI
10 Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.   DOI
11 Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites, Part 2: Thermo Mechanical Behavior", Int. Mater Rev., 42(3), 85-116. https://doi.org/10.1179/imr.1997.42.3.85.   DOI
12 Warburton G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7, 1965. 399-407. https://doi.org/10.1243/JMES_JOUR-1965-007-062-02.   DOI
13 Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.   DOI
14 Swaddiwudhipong, S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.   DOI
15 Talebitooti, R., Darvish Gohari, H., Zarastvand, M. and Loghmani, A. (2019), "A robust optimum controller for suppressing radiated sound from an intelligent cylinder based on sliding mode method considering piezoelectric uncertainties", J. Intell. Mater. Syst. Struct., 30(20), 3066-3079. https://doi.org/10.1177/1045389X19873412.   DOI
16 Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.   DOI
17 Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.   DOI
18 Chen, Y., Zhao, H.B. and Shea, Z.P. (1993a), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010.   DOI
19 Darvish Gohari, H., Zarastvand, M. and Talebitooti, R. (2020), "Acoustic performance prediction of a multilayered finite cylinder equipped with porous foam media", J. Sound Vib., 26(11-12), 899-912. https://doi.org/10.1177/1077546319890025.   DOI
20 Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.   DOI
21 Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-120. https://doi.org/10.1016/0029-5493(81)90020-0.   DOI
22 Flugge, W. (1967), Stresses in Shells, 2nd Edition, Springer-Verlag, Berlin, Germany.
23 Zarastvand, M.R., Asadijafari, M.H. and Talebitooti, R. (2021), "Improvement of the low-frequency sound insulation of the poroelastic aerospace constructions considering Pasternak elastic foundation", Aerosp. Sci. Tech., 112, 106620. https://doi.org/10.1016/j.ast.2021.106620.   DOI
24 Talebitooti, R. and Zarastvand, M.R. (2018a), "The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly curved shell", Aerosp. Sci. Tech., 78, 157-170. https://doi.org/10.1016/j.ast.2018.03.010.   DOI
25 Talebitooti, R. and Zarastvand, M.R. (2018b), "Vibroacoustic behavior of orthotropic aerospace composite structure in the subsonic flow considering the Third order Shear Deformation Theory", Aerosp. Sci. Tech., 75, 227-236. https://doi.org/10.1016/j.ast.2018.01.011.   DOI
26 Talebitooti, R., Zarastvand, M.R. and Gheibi, M.R. (2016), "Acoustic transmission through laminated composite cylindrical shell employing third order shear deformation theory in the presence of subsonic flow", Compos. Struct., 157, 95-110. https://doi.org/10.1016/j.compstruct.2016.08.008.   DOI
27 Talebitooti, R., Zarastvand, M.R. and Gohari, H.D. (2018), "The influence of boundaries on sound insulation of the multilayered aerospace poroelastic composite structure", Aerosp. Sci. Tech., 80, 452-471. https://doi.org/10.1016/j.ast.2018.07.030.   DOI
28 Uyar, G.G. and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.   DOI
29 Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2019), "Acoustic insulation characteristics of shell structures: A review", Arch. Comput. Meth. Eng., 1-19. https://doi.org/10.1007/s11831-019-09387-z.   DOI
30 Forsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", AIAA J., 2, 182-189. https://doi.org/10.2514/3.55115.   DOI
31 Talebitooti, R., Zarastvand, M. and Darvishgohari, H. (2019), "Multi-objective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure", J. Sandw. Struct. Mater., 23(4), 1221-1252. https://doi.org/10.1177/1099636219854748.   DOI
32 Wang S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acous. Soc. Amer., 55, 1340-1342. https://doi.org/10.1121/1.1914708.   DOI
33 Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proc. Cambridge Philosoph. Soc., 7, 101-111.
34 Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 2020, 345-358. https://doi.org/10.12989/gae.2020.20.4.345.   DOI
35 Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), 'On the small free vibrations and deformation of thin elastic shell'", Phil. Trans. Royal Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
36 Bouazza, M., Antar, K., Amara, K., Benyoucef, S. and Bedia, E.A. A. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.   DOI
37 Gohari, H. D., Zarastvand, M.R., Talebitooti, R., Loghmani, A. and Omidpanah, M. (2020), "Radiated sound control from a smart cylinder subjected to piezoelectric uncertainties based on sliding mode technique using self-adjusting boundary layer", Aerosp. Sci. Tech., 106, https://doi.org/10.1016/j.ast.2020.106141.   DOI
38 Asadijafari, M.H., Zarastvand, M.R. and Talebitooti, R. (2021), "The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures", Compos. Struct., 256, 113064. https://doi.org/10.1016/j.compstruct.2020.113064.   DOI
39 Jweeg, M.J. and Alazzawy, W.I. (2007), "A suggested analytical solution for laminated closed cylindrical shells using General Third Shell Theory (GTT)", Al-Nahrain J. Eng. Sci., 10(1), 11-26.
40 Ghosh, A., Miyamoto, Y., Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications. Ceramic Transactions", Am. Ceram. Soc., 76, 171-189.
41 Jweeg, M.J., Alazzawy, W.I. and Dep, M.E. (2010), "A study of free vibration and fatigue for cross-ply closed cylindrical shells using General Third shell Theory (GTT)", J. Eng., 16(6), 5170-5184.
42 Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", National Aeronautic and Space Administration; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia, U.S.A.
43 Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107(1), 17-28. https://doi.org/10.1016/0022-460X(86)90279-8.   DOI
44 Bouanati, S., Benrahou, K.H., Atmane, H.A., Yahia, S.A., Bernard, F., Tounsi, A. and Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.   DOI
45 Chen, Y., Zhao, H.B. and Shin, Z.P. (1993b), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.   DOI
46 Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
47 Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41(3-4), 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9.   DOI
48 Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235.
49 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A. A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161   DOI