Browse > Article
http://dx.doi.org/10.12989/gae.2021.26.2.117

Water retention behaviour of tailings in unsaturated conditions  

Bella, Gianluca (Politecnico di Torino)
Publication Information
Geomechanics and Engineering / v.26, no.2, 2021 , pp. 117-132 More about this Journal
Abstract
Tailing dams are complex geotechnical systems comprising of an embankment and a basin containing the waste products from the mining processes. These structures are characterized by a wide surface exposed to the atmosphere whose interaction governs the position of the phreatic surface within the basin. A detailed knowledge of the hydro-mechanical properties of the tailings is fundamental to reliably assess the stability of the tailing dams. While most of the previous studies have dealt with the response of tailings in saturated conditions, this research provides an extension of the hydraulic behaviour in unsaturated and nearly saturated state of tailings collected after the failure of the Stava basins. The hydraulic behaviour in unsaturated conditions was investigated by means of tests where the suction was imposed and the water content was monitored (axis translation technique and vapour equilibrium technique), and tests where the water content was imposed and the suction was measured with psychrometer (dew point method). To account for the in-situ heterogeneity of tailings, the dependency of the water retention relationship on the grain size distribution, the preparation technique and on the initial density / void ratio was studied. Denser tailings showed a higher water retention behaviour than that given in looser specimens. Similarly, the increase of the fine content was demonstrated to improve the water retention capability. As for standard soils, also statically compacted Stava tailings reveal lower retention capability than the slurry samples, thus confirming the importance of the preparation method in determining the hydro-mechanical response of such soils.
Keywords
fine content; soil water retention curve; tailing dams; unsaturated soil; void ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Robertson, P.K., de Melo, L., Williams D.J. and Wilson, G.W (2019), Report of the Expert Panel on the Technical Causes of the Failure of Feijao Dam I.
2 Pham H.Q. and Fredlund, D.G. (2008), "Equations for the entire soil-water characteristic curve of a volume change soil", Can. Geotech. J., 45(4), 443-453. https://doi.org/10.1139/T07-117.   DOI
3 Zuoan, W., Yulong C., Guangzhi, Y., Yonghao, Y. and Weimin, S. (2019), "An alternative upstream method for the Zhelamuqing tailings impoundment construction of a Copper Mine in China", Geomech. Eng., 19(5), 383-392. https://doi.org/10.12989/gae.2019.19.5.383.   DOI
4 Alonso, E.E. and Gens, A. (2006), "Aznalcollar dam failure. Part 1: Field observations and material properties", Geotechnique, 56(3), 165-183. https://doi.org/10.1680/geot.2006.56.3.165.   DOI
5 Alonso, E.E., Pereira, J.M., Vaunat, J. and Olivella, S. (2010), "A microstructurally based effective stress for unsaturated soils", Geotechnique", 60(12), 913-925. http://doi.org/10.1680/geot.8.P.002.   DOI
6 Arab, A., Belkhatir M. and Sadek, M. (2015), "Saturation effect on behaviour of sandy soil under monotonic and cyclic loading: A laboratory investigation", Geotech. Geol. Eng., 34(1), 347-358. https://doi.org/10.1007/s10706-015-9949-6.   DOI
7 Bhanbhro, R. (2014), "Mechanical properties of tailings - basic description of a tailings material from Sweden", Ph.D. Dissertation, Lulea University of Technology, Lulea, Sweden.
8 Bulut, R., Hineidi, S.M. and Bailey, B. (2002), "Suction measurements - filter paper and chilled mirror psychrometer", Proceedings of the Texas Section American Society of Civil Engineers, Waco, Texas, U.S.A., October.
9 Chandler, R.J. and Tosatti, G. (1995), "The Stava tailings dams failure, Italy, July 1985", Proc. Inst. Civ. Eng. Geotech. Eng., 113(2), 67-79. https://doi.org/10.1680/igeng.1995.27586.   DOI
10 Carrera, A., Coop, M. and Lancellotta, R. (2011), "Influence of grading on the mechanical behaviour of Stava tailings", Geotechnique, 61(11), 935-946. https://doi.org/10.1680/geot.9.P.009.   DOI
11 Esposito, T., Assis, A. and Giovannini, M. (2010), "Influence of the variability of geotechnical parameters on the liquefaction potential of tailing dams", Int. J. Surface Min. Reclam. Environ., 16(4), 304-316. https://doi.org/10.1076/ijsm.16.4.304.8639.   DOI
12 Fredlund, D.G., Morgenstern, N.R., and Widger, R.A. (1978), "The shear strength of unsaturated soils", Can. Geotech. J., 15(3), 313-321. https://doi.org/10.1139/t78-029.   DOI
13 Bella, G. (2017), "Hydro-mechanical behaviour of tailings in unsaturated conditions", Ph.D. Dissertation, Politecnico di Torino, Torino, Italy.
14 Cabarkapa, Z. and Cuccovillo, T. (2006), "Automated triaxial apparatus for testing unsaturated soils", Geotech. Test. J., 29(1), 21-29. https://doi.org/10.1520/GTJ12310.   DOI
15 Chu J., Leong, W.K. and Loke, W.L. (2003), "Discussion of "defining an appropriate steady state line for Marriespruit gold tailings", Can. Geotech. J., 40(2), 484-486. https://doi.org/10.1139/t02-118.   DOI
16 Estabragh, A.R. and Javadi, A.A. (2014), "Roscoe and Hvorslev surfaces for unsaturated silty soil", Int. J. Geomech., 14(2), 230-238. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000306.   DOI
17 Fredlund, D.G. and Pham, Q.H. (2006), "A volume-mass constitutive model for unsaturated soils in terms of two independent stress state variables", Proceedings of the 4th International Conference on Unsaturated Soil. Carefree, Arizona, U.S.A., April.
18 Nicotera, M.V., Papa, R. and Urciuoli, G., (2015), "The hydromechanical behaviour of unsaturated pyroclastic soils: An experimental investigation", Eng. Geol., 195, 70-84. https://doi.org/10.1016/j.enggeo.2015.05.023.   DOI
19 Huang, S.Y., Barbour, S.L., Fredlund, D.G. (1998), "Development and verification of a coefficient of permeability function for a deformable unsaturated soil", Can. Geotech. J., 35(3), 411-425. https://doi.org/10.1139/t98-010.   DOI
20 Ng, C.W.W. and Pang, Y.W. (2000), "Influence of stress state on soil-water characteristics and slope stability", J. Geotech. Geoenviron. Eng., 126(2), 157-66. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:2(157).   DOI
21 Lucchi, G. (2021), "Tailing Dams: lezioni dal passato e dal presente. Stava: Cause e responsabilita[Tailing Dams: lessons learnt from the past and present: Causes and responsabilities"]", Online Conference, GEAM.
22 Oberg A.L. and Sallfors, G. (1997), "Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve", Geotech. Test. J., 20(1), 40-48. https://doi.org/10.1520/GTJ11419J.   DOI
23 Rassam, D.W. and Williams, D.J. (1999), "A relationship describing the shear strength of unsaturated soils", Can. Geotech. J., 36(2), 363-368. https://doi/org/10.1139/t98-102.   DOI
24 Romero, E. (1999), "Thermo hydro-mechanical behaviour of unsaturated Boom Clay: An experimental study", Ph.D. Dissertation, Universidad Politecnica de Catalunya, Barcelona, Spain.
25 Sun, D.A., Matsuoka, H., Yao, Y.P. and Ichihara, W. (2000), "An elasto-plastic model for unsaturated soil in three-dimensional stresses", Soils Found., 40(3), 17-28. http://doi.org/10.3208/sandf.40.3_17.   DOI
26 van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soil", Soil Sci. Soc. Amer. J., 44, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.   DOI
27 Tarantino, A. and Tombolato, S. (2005), "Coupling of hydraulic and mechanical behaviour in unsaturated compacted clay", Geotechnique, 55(4), 307-317. https://doi.org/10.1680/geot.2005.55.4.307.   DOI
28 Tekinsoy, M.A., Kayadelen, C., Keskin, M.S. and Soylemez, M. (2004), "An equation for predicting shear strength envelope with respect to matric suction", Comput. Geotech., 31(7), 589-593. https://doi.org/10.1016/j.compgeo.2004.08.001.   DOI
29 Vaid, Y.P. and Sivathayalan, S. (2000), "Fundamental factors affecting liquefaction susceptibility of sands", Can. Geotech. J., 37(3), 592-606. https://doi.org/10.1139/t00-040.   DOI
30 Rassam, D.W. and Cook, F.J. (2002), "Predicting the shear strength envelope of unsaturated soil", Geotech. Test. J., 25(2), 215-220. https://doi.org/10.1520/GTJ11365J.   DOI
31 Fredlund, D.G., Xing, A., Fredlund, M.D. and Barbour, S.L. (1996), "The relationship of the unsaturated soil shear strength to the soil-water characteristic curve", Can. Geotech. J., 33(3), 440-448. https://doi.org/10.1139/t96-065.   DOI
32 Gallipoli D., Wheeler, S.J. and Karstunen M. (2003), "Modelling the variation of degree of saturation in a deformable unsaturated soil", Geotechnique, 53(1), 105-112. https://doi.org/10.1680/geot.2003.53.1.105.   DOI
33 Gan, J.K.M., Fredlund, D.G. and Rahardjo, H. (1988), "Determination of the shear strength parameters of an unsaturated soil using the direct shear test", Can. Geotech. J., 25(3), 500-510. https://doi/org/10.1139/t88-055.   DOI
34 Horn-Da, L., Chien-Chih, W. and Xu-Hui, W. (2018), "A simplified method to estimate the total cohesion of unsaturated soil using an UC test", Geomech. Eng., 16(6), 599-608. https://doi.org/10.12989/gae.2018.16.6.599.   DOI
35 Kim, Y., and Jeong, S. (2017), "Modeling of shallow landslides in an unsaturated soil slope using a coupled model", Geomech. Eng., 13(2),353-370. https://doi.org/10.12989/gae.2017.13.2.353.   DOI
36 Luino, F. and De Graff, J.V. (2012), "The Stava mudflow of 19 July 1985 (Northern Italy): A disaster that effective regulation might have prevented", Nat. Hazards Earth Syst. Sci., 12, 1029-1044. https://doi.org/10.5194/nhess-12-1029-2012.   DOI
37 Deng, D., Wen, S., Lu, K. and Li, L. (2020), "Calculation model for the shear strength of unsaturated soil under nonlinear strength theory", Geomech. Eng., 21(3), 247-258. https://doi.org/10.12989/gae.2020.21.3.247.   DOI
38 Sun, D., Sheng, D. and Xu, Y. (2007), "Collapse behaviour of unsaturated compacted soil with different initial densities", Can. Geotech. J., 44(6), 673-686. https://doi.org/10.1139/t07-023.   DOI
39 Lu, N. and Likos, W.J. (2006), "Suction stress characteristic curve for unsaturated soil", J. Geotech. Geoenviron. Eng., 132(2), 131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).   DOI
40 Santamarina, J.C., Torres-Cruz, L.A. and Bachus, R.C. (2019), "Why coal ash and tailings dam disasters occur", Science, 364(6440), 526-528. https://doi.org/10.1126/science.aax1927.   DOI
41 Tang, A.M. and Cui, Y.J. (2005), "Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay", Can. Geotech. J., 42(1), 287-296. https://doi.org/10.1139/t04-082.   DOI
42 Sheng, D., Fredlund, D.G., and Gens, A. (2008), "A new modelling approach for unsaturated soils using independent stress variables", Can. Geotech. J., 45(4), 511-534. http://doi.org/10.1139/T07-112.   DOI
43 Xu, Y.F. (2004), "Fractal approach to unsaturated shear strength", J. Geotech. Geoenviron. Eng., 130(3), 264-273. http://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(264).   DOI
44 Alonso, E.E., Gens, A. and Josa, A. (1990), "A constitutive model for partially saturated soils", Geotechnique, 40(3), 405-430. https://doi.org/10.1680/geot.1990.40.3.405.   DOI
45 Tarantino, A. and Mountassir, G. (2013), "Making unsaturated soil mechanics accessible for engineers: Preliminary hydraulic-mechanical characterisation & stability assessment", Eng. Geol., 165, 89-104. https://doi.org/10.1016/j.enggeo.2013.05.025.   DOI
46 Tarantino, A. and Di Donna, A. (2019), "Mechanics of unsaturated soils: simple approaches for routine engineering practice", Rivista Italiana Geotec., 53(4), 5-46. https://doi.org/10.19199/2019.4.0557-1405.005.   DOI
47 Toll, D.G. (1990), "A framework for unsaturated soil behaviour", Geotechnique, 40(1), 31-44. https://doi.org/10.1680/geot.1990.40.1.31.   DOI
48 Toll, D.G. and Ong, B.H. (2003), "Critical-state parameters for an unsaturated residual sandy clay", Geotechnique, 53(1), 93-103. https://doi.org/10.1680/geot.2003.53.1.93.   DOI
49 Vanapalli, S.K., Fredlund, D.G., Pufahl D.E. and Clifton, A.W. (1996), "Model for the prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.   DOI
50 Vanapalli, S.K., Fredlund D. and Pufahl, D.E. (1999), "The influence of soil structure and stress history on the soil-water characteristics of a compacted till", Geotechnique, 49(2), 143-59. https://doi.org/10.1680/geot.1999.49.2.143.   DOI
51 Zanardin, M.T., Oldecop, L.A., Rodriguez, R. and Zabala, F. (2009), "The role of capillary water in the stability of tailing dams", Eng. Geol., 105(1-2), 108-118. https://doi.org/10.1016/j.enggeo.2008.12.003.   DOI
52 Khalili, N. and Khabbaz, M.H. (1998), "A unique relationship for χ for the determination of the shear strength of unsaturated soils", Geotechnique, 48(5), 681-687. https://doi.org/10.1680/geot.1998.48.5.681.   DOI
53 Rico, M., Benito, G., Salgueiro, A.R., Diez-Herrero, A. and Pereira, H.G. (2008), "Reported tailings dam failures - A review of the European incidents in the worldwide context", J. Hazard. Mater., 152(2), 846-852. https://doi.org/10.1016/j.jhazmat.2007.07.050.   DOI