Browse > Article
http://dx.doi.org/10.12989/gae.2021.26.2.101

Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand  

Kumar, S. Anandha (Centre for Advanced Research on Environment, School of Civil Engineering, SASTRA Deemed University)
Sujatha, Evangelin Ramani (Centre for Advanced Research on Environment, School of Civil Engineering, SASTRA Deemed University)
Publication Information
Geomechanics and Engineering / v.26, no.2, 2021 , pp. 101-115 More about this Journal
Abstract
Soil stabilization is widely used to favourably amend the soil behaviour. The use of biopolymers to treat soil is not only an eco-friendly but is also a sustainable approach. Biopolymers, xanthan gum and guar gum are used to augment the strength of clayey sand. Xanthan gum is anionic while guar gum is non-ionic. Triaxial tests were conducted on treated soil samples to understand the effect of biopolymer treatment on clayey sand at different dosages and curing periods. Shear strength parameters -angle of internal friction and cohesion increases appreciably on treating soil with xanthan and guar gum for all dosages investigated, though angle of internal friction decreases with the curing period in case of xanthan gum treated soil. Xanthan gum performs better in enhancing the strength and deformation behaviour of the soil compared to guar gum. There is a substantial gain in early strength but as the curing period increases further, the rate of increase in strength is marginal. The deformation modulus at failure also increases with the biopolymer content. The reduction in post-peak strength of treated soil is sudden and drastic indicating brittle behavior. The energy absorption capacity of the biopolymer treated soil increases with increase in biopolymer content and curing period. The strength gain in soil can be ascribed to the formation of hydrogels that are cementitious in nature. Strength is also improved through the ionic / hydrogen bonds that are formed by biopolymer addition.
Keywords
cohesion; deformation modulus; energy absorption capacity; friction angle; guar gum; Xanthan gum;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Environ. Policy, 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.   DOI
2 Lee, S., Chang, I., Chung, M. K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.   DOI
3 Maghchiche, A., Haouam, A. and Immirzi, B. (2010), "Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions", J. Taibah Univ. Sci., 4(1), 9-16. https://doi.org/10.1016/S1658-3655(12)60022-3.   DOI
4 Oluwatuyi, O.E., Ojuri, O.O. and Khoshghalb, A. (2020), "Cement-lime stabilization of crude oil contaminated kaolin clay", J. Rock Mech. Geotech. Eng., 12(1), 160-167. https://doi.org/10.1016/j.jrmge.2019.07.010.   DOI
5 Chen, R., Zhang, L. and Budhu, M. (2013), "Biopolymer stabilization of mine tailings", J. Geotech. Geoenviron. Eng., 139(10), 1802-1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902.   DOI
6 Rashid, A.S.A., Latifi, N., Meehan, C.L. and Manahiloh, K.N., (2017), "Sustainable improvement of tropical residual soil using an environmentally friendly additive", Geotech. Geol. Eng., 35(6), 2613-2623. https://doi.org/10.1007/s10706-017-0265-1.   DOI
7 Smitha, S., Rangaswamy, K. and Keerthi, D.S. (2019), "Triaxial test behavior of silty sands treated with agar biopolymer", Int. J. Geotech. Eng., 1-12. https://doi.org/10.1080/19386362.2019.1679441.   DOI
8 Venugopal, K.N. and Abhilash, M. (2010), "Study of hydration kinetics and rheological behavior of guar gum", Int. J. Pharm. Sci. Res., 1(1), 28-39.
9 Kwon, Y. M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.   DOI
10 Das, S. K., Mahamaya, M., Panda, I. and Swain, K. (2015), "Stabilization of pond ash using biopolymer", Procedia Earth Planet. Sci., 11(20).
11 Kumar, S.A., Sujatha, E.R., Pugazhendi, A. and Jamal, M.T. (2021), "Guar gum - stabilized soil : A clean, sustainable and economic alternative liner material for landfills", Clean Technol. Environ. Policy. https://doi.org/10.1007/s10098-021-02032-z.   DOI
12 Ghasemzadeh, H., Mehrpajouh, A., Pishvaei, M. and Mirzababaei, M. (2020b), "Effects of curing method and glass transition temperature on the unconfined compressive strength of acrylic liquid polymer-stabilized kaolinite", J. Mater. Civ. Eng., 32(8), 04020212. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003287.   DOI
13 Khatami, H.R. and O'Kelly, B.C. (2013), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.   DOI
14 Krol, Z., Malik, M., Marycz, K. and Jarmoluk, A. (2016), "Physicochemical properties of biopolymer hydrogels treated by direct electric current", Polymers, 8(7), 248. https://doi.org/10.3390/polym8070248.   DOI
15 Ghasemzadeh, H., and Modiri, F. (2020a), "Application of novel Persian gum hydrocolloid in soil stabilization", Carbohydrate Polym., 246, 116639. https://doi.org/10.1016/j.carbpol.2020.116639.   DOI
16 Lee, S., Im. J., Cho. G.C. and Chang. I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer - treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.   DOI
17 Kumar, S.A. and Sujatha, E.R. (2021), "An appraisal of the hydro-mechanical behavior of polysaccharides, xanthan gum, guar gum and β-glucan amended soil", Carbohydrate Polym., 265,118083.   DOI
18 Chang, I., Im, J., Chung, M.K. and Cho, G.C. (2018), "Bovine casein as a new soil strengthening binder from diary wastes", Constr. Build. Mater., 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11.009.   DOI
19 Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: An ecofriendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 825. https://doi.org/10.1007/s12665-016-5643-0.   DOI
20 Liu, J., Bai, Y., Song, Z., Lu, Y., Qian, W. and Kanungo, D.P. (2018), "Evaluation of strength properties of sand modified with organic polymers", Polymers, 10(3), 287. https://doi.org/10.3390/polym10030287   DOI
21 Muguda, S., Booth, S.J., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W. and Gallipoli, D. (2017), "Mechanical properties of biopolymer-stabilised soil-based construction materials", Geotechniq Lett., 7(4), 309-314. https://doi.org/10.1680/jgele.17.00081.   DOI
22 Qureshi, M.U., Bessaih, N., Al-Sadrani, K., Al-Falahi, S. and Al-Mandhari, A. (2014), "Shear strength of Omani sand treated with biopolymer", Proceedings of the 7th International Congress on Environmental Geotechnics: ICEG 2014, Melbourne, Australia, November.
23 Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785.   DOI
24 Wang, S., Xue, Q., Zhu, Y., Li, G., Wu, Z. and Zhao, K. (2021), "Experimental study on material ratio and strength performance of geopolymer-improved soil", Constr. Build. Mater., 267, 120469. https://doi.org/10.1016/j.conbuildmat.2020.120469.   DOI
25 Ravisankar, R., Kiruba, S., Eswaran, P., Senthilkumar, G. and Chandrasekaran, A. (2010), "Mineralogical characterization studies of ancient potteries of Tamilnadu, India by FT-IR spectroscopic technique", J. Chem., 7(S1), S185-S190. https://doi.org/10.1155/2010/643218.   DOI
26 Reddy, N.G., Nongmaithem, R.S., Basu, D. and Rao, B.H. (2020), "Application of biopolymers for improving the strength characteristics of red mud waste", Environ. Geotech., 1-20. https://doi.org/10.1680/jenge.19.00018.   DOI
27 Soldo, A. and Miletic, M. (2019), "Study on shear strength of xanthan gum-amended soil", Sustainability, 11(21), 6142. https://doi.org/10.3390/su11216142.   DOI
28 Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Sci. Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-019-57135-x.   DOI
29 Sujatha, E.R. and Saisree, S. (2019), "Geotechnical behavior of guar gum-treated soil", Soils Found., 59(6), 2155-2166. https://doi.org/10.1016/j.sandf.2019.11.012.   DOI
30 Yin, Y., Yin, H., Wu, Z., Qi, C., Tian, H., Zhang, W., Hu, Z. and Feng, L. (2019), "Characterization of coals and coal ashes with high Si content using combined second-derivative infrared spectroscopy and raman spectroscopy", Crystals, 9(10), 513. https://doi.org/10.3390/cryst9100513.   DOI
31 Sujatha, E.R., Sivaraman, S. and Subramani, A.K. (2020), "Impact of hydration and gelling properties of guar gum on the mechanism of soil modification", Arab. J. Geosci., 13(23), 1-12. https://doi.org/10.1007/s12517-020-06258-x.   DOI
32 Ahmad, R. and Mirza, A. (2018), "Synthesis of Guar gum/bentonite a novel bionanocomposite: Isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye", J. Mol. Liquids, 249, 805-814. https://doi.org/10.1016/j.molliq.2017.11.082.   DOI
33 Alrubaye, A.J., Hasan, M., and Fattah, M.Y. (2018), "Effects of using silica fume and lime in the treatment of kaolin soft clay", Geomech. Eng., 14(3), 247-255. https://doi.org/10.12989/gae.2018.14.3.247.   DOI
34 Arab M.G., Mousa R.A., Gabr A.R., Azam A.M., El-Badawy S.M., and Hassan A.F (2019). "Resilient behavior of sodium alginate-treated cohesive soils for pavement applications", J. Mater. Civ. Eng., 31(1), 04018361. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002565.   DOI
35 Ayeldeen, M., Negm, A., El-Sawwaf, M. and Kitazume, M. (2017), "Enhancing mechanical behaviors of collapsible soil using two biopolymers", J. Rock Mech. Geotech. Eng., 9(2), 329-339. https://doi.org/10.1016/j.jrmge.2016.11.007.   DOI
36 Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016). "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 371. https://doi.org/10.1007/s12517-016-2366-1.   DOI
37 Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1.   DOI
38 Song, Z., Liu, J., Bai, Y., Wei, J., Li, D., Wang, Q., Chen, Z., Kanungo. D.P. and Qian, W. (2019), "Laboratory and field experiments on the effect of vinyl acetate polymer-reinforced soil", Appl. Sci., 9(1), 208. https://doi.org/10.3390/app9010208.   DOI
39 Chang, I., Tran, A.T.P. and Cho, G.C. (2019c), Introduction of Biopolymer-based Materials for Ground Hydraulic Conductivity Control, in Tunnels and Underground Cities. Engineering and Innovation Meet Archaeology, Architecture and Art, Taylor and Francis, 277-283.
40 Alam, S., Das, B.K. and Das, S.K. (2018), "Dispersion and sedimentation characteristics of red mud", J. Hazard. Toxic Radioact. Waste, 22(4), 04018025. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000420.   DOI
41 ASTM (2015), D2850-15: Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
42 Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z., Tahir, M.M. and Mohamad, E.T. (2017), "Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer", J. Mater. Civ. Eng., 29(2), 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.   DOI
43 Cano-Barrita, P.D.J. and Leon-Martinez, F.M. (2016), Biopolymers with Viscosity-Enhancing Properties for Concrete, in Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, 221-252.
44 Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.   DOI
45 Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. http://doi.org/10.12989/gae.2014.7.6.633.   DOI
46 Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015b), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.   DOI
47 Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015c), "Soil treatment using microbial biopolymers for antidesertification purposes", Geoderma, 253, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.   DOI
48 Chang, I., Kwon, Y. M., Im, J. and Cho, G.C. (2019b), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can. Geotech. J., 56(8), 1206-1213. https://doi.org/10.1139/cgj-2018-0254.   DOI
49 Chang, I. and Cho, G.C. (2018), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x   DOI
50 Chang, I., Lee, M. and Cho, G.C. (2019a), "Global CO2 emission-related geotechnical engineering hazards and the mission for sustainable geotechnical engineering", Energies, 12(13), 2567. https://doi.org/10.3390/en12132567.   DOI
51 Chang, I., Im, J. and Cho, G.C. (2016b), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.   DOI
52 Chudzikowski, R.J. (1971), "Guar gum and its applications", J. Cosmetic Sci., 22(1), 43.
53 Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.   DOI
54 Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., 2101(1), 34-43. https://doi.org/10.3141/2101-05.   DOI
55 Bouazza, A., Gates, W.P. and Ranjith, P. G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand". Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.   DOI
56 Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015a). "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.   DOI
57 Chang, I., Im, J. and Cho, G.C. (2016a), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251.   DOI
58 Eldaw, G.E. (1998), "A study of guar seed and guar gum properties (Cyamopsis tetragonolabous)", M.Sc. Thesis. University of Khartoum, Khartoum, Sudan.
59 Katzbauer, B. (1998), "Properties and applications of xanthan gum", Polymer Degradation Stability, 59(1-3), 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8.   DOI
60 Casas, J.A., Mohedano, A.F. and Garcia-Ochoa, F. (2000), "Viscosity of guar gum and xanthan/guar gum mixture solutions", J. Sci. Food Agricult., 80(12), 1722-1727. https://doi.org/10.1002/1097-0010(20000915)80.   DOI
61 Kumar, S.A. and Sujatha, E.R. (2020), "Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement", Geomech. Eng., 21(5), 413-422. https://doi.org/10.12989/gae.2020.21.5.413.   DOI