Browse > Article
http://dx.doi.org/10.12989/gae.2021.26.1.041

Hoek-Brown failure criterion for damage analysis of tunnels subjected to blast load  

Chinaei, Farhad (Department of Mining Engineering, Science and Research Branch, Islamic Azad University)
Ahangari, Kaveh (Department of Mining Engineering, Science and Research Branch, Islamic Azad University)
Shirinabadi, Reza (Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University)
Publication Information
Geomechanics and Engineering / v.26, no.1, 2021 , pp. 41-47 More about this Journal
Abstract
In this study, a rock tunnel subjected to blast load is modeled mathematically. For this purpose, a cylindrical shell element is used and the motion equations are derived by energy method and Hamilton's principle. In the inner surface of tunnel, different blast holes are considered and its force in radial direction is coupled by motion equations. The structural damping of the structure is assumed by Kelvin-Voigt model. Hoek-Brown failure criterion is utilized for explosion damage analysis of the tunnel. The motion equations are solved numerically by differential quadrature method (DQM). The effect of different parameters such as depth of tunnel, number and diameter of blast holes, type of stone, geological strength index (GSI) and density of stone, type and mass of explosive material are studied on the damage factor of Hoek-Brown criterion. Numerical results show that with increasing the density of explosive material, number and diameter of blast holes, the thickness of damage is increased in the tunnel. In addition, the depth of damage is decreased with increasing strength, GSI, density of rock and depth of tunnel.
Keywords
blasting; GSI; Hoek-Brown failure criterion tunnel; mathematical modelling; numerical method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.   DOI
2 Kolahchi, R., Keshtegar, B. and Trung, N.T. (2021a), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct. 10.1177/10996362211020388.   DOI
3 Kumar A., Chakrabartim A. and Bhargavam P. (2013), "Vibration of laminated composites and sandwich shells based on higher order zigzag theory", Eng. Struct., 56, 880-888.   DOI
4 Li, Y., Yao, W. and Wang, T. (2020), "Free flexural vibration of thin-walled honeycomb sandwich cylindrical shells", Thin-Wall. Struct., 157, 107032. https://doi.org/10.1016/j.engstruct.2013.06.014.   DOI
5 Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Composite, In Press. https://doi.org/10.1002/pc.26118.   DOI
6 Nguyen-Hoang, S. and Phung-Van, P., Natarajan, S. and Kim, H.G. (2016), "A combined scheme of edge-based and node-based smoothed finite element methods for Reissner-Mindlin flat shells", Eng. Comput., 32, 267-284. https://doi.org/10.1007/s00366-015-0416-z.   DOI
7 Rashiddel, A., Kharghani, M., Dias, D. and Hajihassani, M. (2020), "Numerical study of the segmental tunnel lining behavior under a surface explosion - Impact of the longitudinal joints shape", Comput. Geotech., 128, 103822. https://doi.org/10.1016/j.compgeo.2020.103822.   DOI
8 Zaid, M. and Rehan Sadique, Md. (2020), "The response of rock tunnel when subjected to blast loading: Finite element analysis", Eng. Rep., 3(2), e12293. https://doi.org/10.1002/eng2.12293.   DOI
9 Skob, Y.A., Ugryumov, M.L. and Granovskiy, E.A. (2021), "Numerical assessment of hydrogen explosion consequences in a mine tunnel", Int. J. Hydrogen Energ., 46(23), 12361-12371. https://doi.org/10.1016/j.ijhydene.2020.09.067.   DOI
10 Wu, K., Shao, Zh., Hong, S. and Qin, S. (2020), "Analytical solutions for mechanical response of circular tunnels with double primary linings in squeezing grounds", Geomech. Eng., 22(6), 509-518. http://doi.org/10.12989/gae.2020.22.6.509.   DOI
11 Tiwari, R., Chakraborty, T. and Matsagar, V. (2020), "Analysis of curved tunnels in soil subjected to internal blast loading", Acta Geotech., 15(2), 509-528. https://doi.org/10.1007/s11440-018-0694-x.   DOI
12 Zhang, Sh., Ma, H., Huang, X. and Peng, Sh. (2020b), "Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel", Process Saf. Environ., 140, 100-110. https://doi.org/10.1016/j.psep.2020.04.025.   DOI
13 Zhang, X., Zhang, Ch., Min, B. and Xu, Y. (2020), "Experimental study on the mechanical response and failure behavior of double-arch tunnels with cavities behind the liner", Geomech. Eng., 20(5), 399-410. http://doi.org/10.12989/gae.2020.20.5.399.   DOI
14 Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021b), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A Solid, 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.   DOI
15 Hajihassani, M., Kalatehjari, R., Marto, A., Mohamad, H. and Khosrotash, M. (2020), "3D prediction of tunneling-induced ground movements based on a hybrid ANN and empirical methods", Eng. Comput., 36, 251-269, https://doi.org/10.1007/s00366-018-00699-5.   DOI
16 Hong, S.K., Oh, D.W., Kong, S.K. and Lee, Y.J. (2020), "Investigation of divergence tunnel excavation according to horizontal offsets between tunnels", Geomech. Eng., 21(2), 111-122. http://dx.doi.org/10.12989/gae.2020.21.2.111.   DOI
17 Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solid, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.   DOI
18 Kolahchi. R., Rabani Bidgoli. M., Beygipoor. Gh. and Fakhar, M.H. (2015), A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.   DOI
19 Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.   DOI
20 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, 2nd Ed., CRC Press, Washington, U.S.A.
21 Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.   DOI
22 Chen, Sh.L. and Lee, Sh.Ch. (2020), "An investigation on tunnel deformation behavior of expressway tunnels", Geomech. Eng., 21(2), 215-226. http://doi.org/10.12989/gae.2020.21.2.215.   DOI
23 Han, Y., Yang, X. and Ni, J. (2020), "Influence of foam liner on tunnels subjected to internal blast loading, green", Smart Connect. Transport. Syst., 20, 1373-1378. https://doi.org/10.1007/978-981-15-0644-4_103.   DOI
24 Hause, T. and Librescu, L. (2007), "Dynamic response of doubly-curved anisotropic sandwich panels impacted by blast loadings", Int. J. Solids Struct., 44, 6678-6700. https://doi.org/10.1016/j.ijsolstr.2007.03.006.   DOI
25 Tran, M.T., Nguyen, V.L., Pham, S.D. and, Rungamornrat, J. (2020), "Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler-Pasternak foundation with different boundary conditions under thermal environment", Acta Mech., 231(6), 2545-2564. https://doi.org/10.1007/s00707-020-02658-y.   DOI
26 Molkov, V. and Dery, W. (2020), "The blast wave decay correlation for hydrogen tank rupture in a tunnel fire", Int. J. Hydrogen Energ., In Press. https://doi.org/10.1016/j.ijhydene.2020.08.062.   DOI
27 Rawat, A., Matsagar, V.A. and Nagpal, A.K. (2020), "Free vibration analysis of thin circular cylindrical shell with closure using finite element method", Int. J. Steel Struct., 20, 175-193. https://doi.org/10.1007/s13296-019-00277-5.   DOI
28 Seo, Y.S., Jeong, W.B., Yoo, W.S. and Jeong, H.K. (2015), "Frequency response analysis of cylindrical shells conveying fluid using finite element method", J. Mech. Sci. Technol., 19(2), 625-633. https://doi.org/10.1007/BF02916184.   DOI
29 Zhang, X., He, Y., Li, Z., Zhai, Zh., Yan, R. and Chen, X. (2020a), "Static and dynamic analysis of cylindrical shell by different kinds of B-spline wavelet finite elements on the interval", Eng. Comput., 36, 1903-1914. https://doi.org/10.1007/s00366-019-00804-2.   DOI
30 Zhao, X., Chen, Ch., Shi, C., Chen, J., Chen, Q. and Zhao, D. (2020), "A three-dimensional simulation of the effects of obstacle blockage ratio on the explosion wave in a tunnel", J. Therm. Anal. Calorim., 143, 3245-3256. https://doi.org/10.1007/s10973-020-09777-7.   DOI
31 Duc, N.D. and Than, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aerosp. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005.   DOI
32 Iwano, K., Hashiba, K., Nagae, J. and Fukui, K. (2020), "Reduction of tunnel blasting induced ground vibrations using advanced electronic detonators", Tunn. Undergr. Sp. Tech., 105, 103556, https://doi.org/10.1016/j.tust.2020.103556.   DOI
33 Katariya, P.V. and Panda, S.K. (2019), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35, 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.   DOI
34 Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
35 Kolahchi, R. and Kolahdouzan, F. (2021b), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions" Appl. Math. Model. 91, 458-475.   DOI
36 Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.   DOI