Browse > Article
http://dx.doi.org/10.12989/gae.2021.26.1.001

Load-displacement behaviour of tapered piles: Theoretical modelling and analysis  

Li, Yunong (Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University)
Li, Wei (Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University)
Publication Information
Geomechanics and Engineering / v.26, no.1, 2021 , pp. 1-12 More about this Journal
Abstract
This paper presents a simplified analytical approach for evaluating the load-displacement response of single tapered pile and pile groups under static axial compressive loads. The response of the tapered pile shaft is considered elastically in the initial stage, whereas the increase in stresses due to slippage along the pile-soil interface is obtained from a developed undrained cylindrical cavity expansion solution based on the K0-based anisotropic modified Cam-clay (K0-AMCC) model. An effective iterative computer program is developed to calculate the load-displacement behaviour of a single tapered pile. Regarding the response analysis of tapered pile groups, a finite-difference method is employed to calculate the interaction between tapered pile shaft, and the linear elastic model to simulate the interaction developed at the pile base. A reduction coefficient is introduced into the analysis of pile shaft interaction to clarify the reinforcing effect between tapered piles. Therefore, the settlement calculation methods of pile groups are proposed for different pile cap stiffness. The calculation methods of single tapered pile and pile groups are validated using two 3D Finite Element (FE) programs, and the comparison results show that reasonable predictions can be made using the method proposed in this paper. Parametric studies are conducted to investigate the effects of taper angle, soil anisotropy, pile spacing, and pile number on the load-displacement behaviour of single tapered pile and tapered pile groups.
Keywords
cylindrical cavity expansion; $K_0$-AMCC model; load-displacement behaviour; single tapered pile; tapered pile groups;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Comodromos, E.M., Papadopoulou, M.C. and Rentzeperis, I.K. (2009), "Pile foundation analysis and design using experimental data and 3-D numerical analysis", Comput. Geotech., 36(5), 819-836. https://doi.org/10.1016/j.compgeo.2009.01.011.   DOI
2 Elias, V., Welsh, J., Warren, J., Lukas, R., Collin, G. and Berg, R.R. (2006), Ground Improvement Methods, Vol. II, FHW ANHI-06-020, Federal Highway Administration, Washington, D.C., U.S.A.
3 Guo W.D. and Randolph M.F. (1998), "Rationality of load transfer approach for pile analysis", Comput. Geotech., 23, 85-112. https://doi.org/10.1016/S0266-352X(98)00010-X.   DOI
4 Hamderi, M. (2018), "Comprehensive group pile settlement formula based on 3D finite element analyses", Soils Found., 58(1), 1-15. https://doi.org/10.1016/j.sandf.2017.11.012.   DOI
5 Yang, C., Chen, H. and Li, J. (2020), "Drained cylindrical cavity expansion analysis in anisotropic soils considering 3D strength" Geotechnique Lett., 10(2), 346-352. https://doi.org/10.1680/jgele.19.00043.   DOI
6 Yang, C., Li, J., Li, L. and Sun, D. (2021), "Expansion responses of a cylindrical cavity in overconsolidated unsaturated soils: A semi-analytical elastoplastic solution", Comput. Geotech., 130, 103922. https://doi.org/10.1016/j.compgeo.2020.103922.   DOI
7 Zhang, Q. and Zhang, Z. (2012), "Simplified calculation approach for settlement of single pile and pile Groups", J. Comput. Civ. Eng., 26(6), 750-758. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000167.   DOI
8 Wang, Z., Xie, X. and Wang, J. (2012), "A new nonlinear method for vertical settlement prediction of a single pile and pile groups in layered soils", Comput. Geotech., 45, 118-126. https://doi.org/10.1016/j.compgeo.2012.05.011.   DOI
9 He, J., Liu, J., Zhang, K., Wu, Y. and Cao, Z. (2012), "Experimental study of bearing behaviour of composite foundation with rammed soil-cement tapered piles", Chin. J. Rock Mech. Eng., 31(7), 1506-1512 (in Chinese). https://doi.org/10.3969/j.issn.1000-6915.2012.07.026.   DOI
10 Khan, M.K., El Naggar, M.H. and Elkasabgy, M. (2008), "Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil", Can. Geotech. J., 45(3), 377-392. https://doi.org/10.1139/T07-107.   DOI
11 Mayne, P.W., and Kulhawy, F.H. (1982), "K0-OCR relationships in soils", J. Geotech. Eng., 108(6), 851-872. https://doi.org/10.1016/0148-9062(83)91623-6.   DOI
12 Li, L., Li, J. and Sun, D. (2016), "Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay", Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.   DOI
13 Li L., Li J., Sun, D. and Gong, W. (2017b), "Analysis of time-dependent bearing capacity of a driven pile in clayey soils by total stress method", Int. J. Geomech., 17(7), 04016156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000860.   DOI
14 Li, L., Chen, H., Li, J. and Sun, D. (2021), "An elastoplastic solution to undrained expansion of a cylindrical cavity in SANICLAY under plane stress condition", Comput. Geotech., 132, 103990. https://doi.org/10.1016/j.compgeo.2020.103990.   DOI
15 Li, L., Li, J., Wang, Y. and Gong, W. (2020), "Analysis of nonlinear load-displacement behaviour of pile groups in clay considering installation effects", Soils Found., 60(4), 1-15. https://doi.org/10.1016/j.sandf.2020.04.008.   DOI
16 Manandhar, S. and Yasufuku, N. (2012), "Analytical model for the end bearing capacity of tapered piles using cavity expansion theory", Adv. Civ. Eng., 339-347. https://doi.org/10.1155/2012/749540.   DOI
17 Mylonakis, G., and Gazetas, G. (1998), "Settlement and additional internal forces of grouped piles in layered soil", Geotechnique, 48(1), 55-72. https://doi.org/10.1680/geot.1998.48.1.55.   DOI
18 Paik, K., Lee, J. and Kim, D. (2013), "Calculation of the axial bearing capacity of tapered bored piles", Proc. ICE Geotech. Eng., 166(5), 502-514. https://doi.org/10.1680/geng.10.00127.   DOI
19 Zil'berberg, S.D. and Sherstnev, A.D. (1990), "Construction of compaction tapered pile foundations", Soil Mech. Found. Eng., 27(3), 96-101. https://doi.org/10.1007/BF02306664.   DOI
20 El Naggar, M.H. and Wei, J.Q. (1999), "Axial capacity of tapered piles established from model tests", Can. Geotech. J., 36(6), 1185-1194. https://doi.org/10.1139/t99-076.   DOI
21 Liu, J., He, J., Wu, Y. and Yang, Q. (2012), "Load transfer behaviour of a tapered rigid pile", Geotechnique, 62, 649-652. https://doi.org/10.1680/geot.11.T.001.   DOI
22 Hataf, N. and Shafaghat, A. (2015), "Optimizing the bearing capacity of tapered piles in realistic scale using 3D finite element method", Geotech. Geol. Eng., 33, 1465-1473. https://doi.org/10.1007/s10706-015-9912-6.   DOI
23 Kodikara, J., Kong, K.H. and Haque, A. (2006), "Numerical evaluation of side resistance of tapered piles in mudstone", Geotechnique, 56, 505-510. https://doi.org/10.1680/geot.56.7.505.   DOI
24 Lee, C.Y. (1993), "Settlement of pile group-practical approach", J. Geotech. Eng., 119(9), 1449-1461. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1449).   DOI
25 Li, C., Zou, J.F. and Li, L. (2019), "Elasto-plastic solution for cavity expansion problem in anisotropic and drained soil mass", Geomech. Eng., 19(6), 513-522. http://doi.org/10.12989/gae.2019.19.6.513.   DOI
26 Li, L., Li, J., Sun, D. and Gong, W. (2017a), "A semi-analytical approach for time-dependent load-settlement response of a jacked pile in clay strata", Can. Geotech. J., 54(12), 1682-1692. https://doi.org/10.1139/cgj-2016-0561.   DOI
27 Randolph, M.F. and Wroth, C.P. (1979), "An analysis of the vertical deformation of pile groups", Geotechnique, 29(4), 423-439. https://doi.org/10.1680/geot.1979.29.4.423.   DOI
28 Manandhar, S. and Yasufuku, N. (2013), "Vertical bearing capacity of tapered piles in sands using cavity expansion theory", Soils Found., 53, 853-867. https://doi.org/10.1016/j.sandf.2013.10.005.   DOI
29 Paik, K., Lee, J. and Kim, D. (2011), "Axial response and bearing capacity of tapered piles in sandy soil", Geotech. Test. J., 34, 1-9. https://doi.org/10.1520/GTJ102761.   DOI
30 Randolph, M.F. and Wroth, C.P. (1978), "Analysis of deformation of vertically loaded piles", J. Geotech. Geoenviron. Eng., 104, 1465-1488. https://doi.org/10.1061/AJGEB6.0000729.   DOI
31 Sakr, M., and El Naggar, M.H. (2003), "Centrifuge modeling of tapered piles in sand", Geotech. Test. J., 26(1), 22-35. https://doi.org/10.1520/GTJ11106J.   DOI
32 Singh, S. and Patra, N.R. (2020), "Axial behavior of tapered piles using cavity expansion theory", Acta Geotech., 15, 1619-1636. https://doi.org/10.1007/s11440-019-00866-y.   DOI
33 Liu, J., He, J. and Min, C. (2010), "Contrast research of bearing behavior for composite foundation with tapered piles and cylindrical piles", Rock Soil Mech., 31(7), 2202-2206. https://doi.org/10.16285/j.rsm.2010.07.027 (in Chinese).   DOI
34 Li, C. and Zou, J.F. (2019), "Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model", Geomech. Eng., 19(2), 141-151. http://doi.org/10.12989/gae.2019.19.2.141.   DOI
35 Kodikara, J.K. and Moore, I.D. (1993), "Axial response of tapered piles in cohesive frictional ground", J. Geotech. Eng., 119, 675-693. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:4(675).   DOI
36 Kurian, N.P. and Srinivas, M.S. (1995), "Studies on the behaviour of axially loaded tapered piles by the finite element method", Int. J. Numer. Anal. Met., 19, 869-888. https://doi.org/10.1002/nag.1610191204.   DOI
37 Lee, K.M. and Xiao, Z.R. (2001), "A simplified method for nonlinear analysis of single piles in multilayered soils", Can. Geotech. J., 38(5), 1063-1080. https://doi.org/10.1139/t01-034.   DOI
38 Wei, J. and El Naggar, M.H. (1998), "Experimental study of axial behaviour of tapered piles", Can. Geotech. J., 35(4), 641-654. https://doi.org/10.1139/cgj-35-4-641.   DOI