Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.6.535

Crack development and coalescence process in drying clayey loess  

Wei, Xin (School of Human Settlement and Civil Engineering, Xi'an Jiaotong University)
Hattab, Mahdia (Laboratory of Microstructures and Mechanics of Materials, University of Lorraine)
Taibi, Said (Laboratory of Waves and Complex Media, University of Havre)
Bicalho, Katia V. (Department of Civil Engineering, Federal University of Espirito Santo)
Xu, Ling (School of Human Settlement and Civil Engineering, Xi'an Jiaotong University)
Fleureau, Jean-Marie (Laboratory of Mechanics of Soils, Structures and Materials, Paris-Saclay University)
Publication Information
Geomechanics and Engineering / v.25, no.6, 2021 , pp. 535-552 More about this Journal
Abstract
The Chinese Loess Plateau is located in northwestern China. During investigations in loess fields, it was found that, under dry climatic conditions, cracks were prone to appear and propagate in the loess plateau. The presence of cracks and their effect on the engineering properties of loess greatly influence the stability of soil-based structures and can cause severe damages. The purpose of this research was to analyze the drying-induced cracking mechanisms in clayey loess, and to highlight the effect of soil mineralogy. Laboratory tests were performed to simulate the cracking process in loess. The analysis is based on the local two-dimensional strain and displacement fields derived from the Digital Image Correlation (DIC) method and the software VIC-2D. The determination of the mechanical strain tensors, i.e., the difference between the total strain and shrinkage strain tensors, and their visual representation allow a deeper understanding of cracking mechanisms. Based on the above methods, crack development and crack coalescence processes were observed and analyzed. Besides, other mechanisms were identified, such as junction and bifurcation of cracks.
Keywords
clayey loess; digital image correlation; crack development; mechanical strain tensors; coalescence; bifurcation; junction processes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Xu, L. and Coop, M. (2016), "Influence of structure on the behavior of a saturated clayey loess", Can. Geotech. J., 53, 1026-1037. https://doi.org/10.1139/cgj-2015-0200.   DOI
2 Xu, L. and Coop, M. (2017), "The mechanics of a saturated silty loess with a transitional mode", Geotechnique, 67(7), 581-596. https://doi.org/10.1680/jgeot.16.p.128.   DOI
3 Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/s0148-9062(98)00005-9.   DOI
4 Baker, R. (1981), "Tensile strength, tension cracks, and stability of slopes", Soils Found., 21(2), 1-17. https://doi.org/10.3208/sandf1972.21.2_1.   DOI
5 Bombolakis, E.G. (1963), "Photoelastic stress analysis of crack propagation within a compressive stress field", Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.
6 Wang, J. (2000), Theory and Application of Ground Fissures, Shaanxi Science and Technology Press, Xi'an, China (in Chinese).
7 Zhou, X.P., Gu, X.B. and Wang, Y.T. (2015), "Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks", Int. J. Rock Mech. Min. Sci., 80, 241-254. https://doi.org/10.1016/j.ijrmms.2015.09.006.   DOI
8 Auvray, R., Rosin-Paumier, S., Abdallah, A. and Masrouri, F. (2014), "Quantification of soft soil cracking during suction cycles by image processing", Eur. J. Environ. Civ. Eng., 18(1), 11-32. https://doi.org/10.1080/19648189.2013.840250.   DOI
9 Li, Z.S., Benchouk, A., Derfouf, F.M., Abou-Bekr, N., Taibi, S., Souli, H. and Fleureau J.M. (2018), "Global representation of the drying-wetting curves of four engineering soils: Experiments and correlations", Acta Geotech., 13(1), 51-71. https://doi.org/10.1007/s11440-017-0527-3.   DOI
10 Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., 9(6), 793-813. https://doi.org/10.12989/gae.2015.9.6.793.   DOI
11 Sun, X.Z., Shen, B. and Zhang, B.L. (2018), "Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress", Geomech. Eng., 14(2), 195-202. https://doi.org/10.12989/gae.2018.14.2.195   DOI
12 Kargel, J.S., Schreiber Jr, J.F. and Sonett, C.P. (1996), "Mud cracks and dedolomitization in the Wittenoom Dolomite, Hamersley Group, Western Australia", Global Planet. Change, 14, 73-96. https://doi.org/10.1016/0921-8181(95)00055-0.   DOI
13 Bagheripour, M., Rahgozar, R. and Pashnesaz, H. (2011), "A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock", Geomech. Eng., 3(1), 61-81. https://doi.org/10.12989/gae.2011.3.1.061.   DOI
14 Zhang, Y., Ye, W.M., Chen, Y.G. and Ye, B. (2016), "Desiccation of NaCl-contaminated soil of earthen heritages in the Site of Yar City, northwest China", Appl. Clay Sci., 124-125, 1-10. https://doi.org/10.1016/j.clay.2016.01.047.   DOI
15 Zhou, X.P. and Wang, Y.T. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010.   DOI
16 Youshida, S. and Adachi, K. (2004), "Numerical analysis of crack generation in saturated deformable soil under row-planted vegetation", Geoderma, 120, 63-74. https://doi.org/10.1016/j.geoderma.2003.08.009.   DOI
17 Wei, X., Bicalho, K.V.., Hajjar, A.E., Taibi, S., Hattab, M. and Fleureau, J.M. (2021), "Experimental techniques for the study of the cracking mechanisms in drying clays", Geotech. Test. J., 44(2), 323-338. https://doi.org/10.1520/GTJ20190430.   DOI
18 Costa, S., Kodikara, J., Barbour, S.L. and Fredlund, D.G. (2017), "Theoretical analysis of desiccation crack spacing of a thin, long soil layer", Acta Geotechnica, 13(1), 39-49. https://doi.org/10.1007/s11440-017-0602-9.   DOI
19 DeCarlo, K.F. and Caylor, K.K. (2019), "Biophysical effects on soil crack morphology in a faunally active dryland vertisol", Geoderma, 334,134-145. https://doi.org/10.1016/j.geoderma.2018.07.042.   DOI
20 Hirobe, S. and Oguni, K. (2017), "Modeling and numerical investigations for hierarchical pattern formation in desiccation cracking", Physica D, 359, 29-38. https://doi.org/10.1016/j.physd.2017.08.002.   DOI
21 Lee, H.W. and Jeon, S.W. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48, 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.   DOI
22 Bazant, Z.P. and Wittmann, F.H. (1982), Creep and Shrinkage in Concrete Structures, Wiley, New York, U.S.A.
23 Bronswijk, J.J.B. (1990), "Shrinkage geometry of a heavy clay soil at various stresses", Soil Sci. Soc. Am. J., 54(5), 1500-1502. https://doi.org/10.2136/sssaj1990.03615995005400050048x.   DOI
24 Konrad, J.M. and Ayad, R. (1997), "An idealized framework for the analysis of cohesive soils undergoing desiccation", Can. Geotech. J., 34, 477-488. https://doi.org/10.1139/t97-015.   DOI
25 Lakshmikantha, M.R., Prat, P.C. and Ledesma, A. (2009), "Image analysis for the quantification of a developing crack network on a drying soil", Geotech. Test. J., 32(6), 505-515. https://doi.org/10.1520/GTJ102216.   DOI
26 Lee, F.H., Lo, K.W. and Lee, S.L. (1988), "Tension crack development in soils", J. Geotech. Eng., 114(8), 915-929. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:8(915).   DOI
27 Li, Y.P., Wang, Y.H. and Chen, L.Z. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Solids Struct., 42(9), 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033.   DOI
28 Li, J.H. and Zhang, L.M. (2011), "Study of desiccation crack initiation and development at ground surface", Eng. Geol., 123 (4), 347-358. https://doi.org/10.1016/j.enggeo.2011.09.015.   DOI
29 Li, J.H., Li, L., Chen, R. and Li, D.Q. (2016), "Cracking and vertical preferential flow through landfill clay liners", Eng. Geol., 206, 33-41. https://doi.org/10.1016/j.enggeo.2016.03.006.   DOI
30 Li, J.H., Lu, Z., Guo, L.B. and Zhang, L.M. (2017), "Experimental study on soil-water curve for silty clay with desiccation cracks", Eng. Geol., 218, 70-76. https://doi.org/10.1016/j.enggeo.2017.01.004.   DOI
31 Kodikara, J. and Costa, S. (2013), Desiccation cracking in clayey Soils: Mechanisms and Modelling in Multiphysical Testing of Soils and Shales, Springer Press, Berlin, Germany, 21-32.
32 Avila, G. (2004), "Study of shrinkage and cracking of clays - application to clay in Bogota", Ph.D. Dissertation, Polytechnic University of Catalunya, Barcelona, Spain.
33 Abd El-Halim, A.A. (2017), "Image processing technique to assess the use of sugarcane pith to mitigate clayey soil cracks: Laboratory experiment", Soil Till. Res., 169, 138-145. https://doi.org/10.1016/j.still.2017.02.007.   DOI
34 Amarasiri, A.L. and Kodikara, J.K. (2013), "Numerical modelling of a field desiccation test", Geotechnique, 63(11), 983-986. https://doi.org/10.1680/geot.12.P.010.   DOI
35 ASTM. (2011), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM standard D2487. American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A.
36 Li, H.D., Tang, C.S., Cheng, Q., Li, S.J., Gong, X.P. and Shi, B. (2019), "Tensile strength of clayey soil and the strain analysis based on image processing techniques", Eng. Geol., 253, 137-148. https://doi.org/10.1016/j.enggeo.2019.03.017.   DOI
37 Liang, J., Huang, R., Prevost, J.H. and Suo, Z. (2003), "Evolving crack patterns in thin films with the extended finite element method", Int. J. Solids Struct., 40, 2343-2354. https://doi.org/10.1016/S0020-7683(03)00095-7.   DOI
38 Tay, Y.Y., Stewart, D.I. and Cousens, T.W. (2001), "Shrinkage and desiccation cracking in bentonite - sand landfill liners", Eng. Geol., 60(1), 263-274. https://doi.org/10.1016/S0013-7952(00)00107-1.   DOI
39 Wang, D.Y., Tang, C.S., Shi, B. and Li, J. (2016), "Studying the effect of drying on soil hydromechanical properties using micro-penetration method", Environ. Earth Sci., 75(12), 1-13. https://doi.org/10.1007/s12665-016-5836-6.   DOI
40 Wei, X. (2014), "Micro-macro study of cracks in clays related to desiccation", Ph.D Dissertation, Ecole Centrale Paris, Chatenay Malabry, France.
41 Trabelsi, H., Jamei, M., Zenzri, H. and Olivella, S. (2012), "Crack patterns in clayey soils: Experiments and Modeling", Int. J. Numer. Anal. Methods Geomech., 36, 1410-1433. https://doi.org/10.1002/nag.1060.   DOI
42 Wei, X., Hattab, M. and Fleureau, J.M. (2013), "Micro-macro-experimental study of two clayey materials on drying paths", B. Eng. Geol. Environ., 72, 495-508. https://doi.org/10.1007/s10064-013-0513-4.   DOI
43 Wei, X., Hattab M., Bompard P. and Fleureau, J.M. (2016), "Highlighting some mechanisms of crack formation and propagation in clays on drying path", Geotechnique, 66(4), 287-300. https://doi.org/10.1680/jgeot.14.p.227.   DOI
44 Willden, R. and Mabey, D.R. (1961), "Giant desiccation fissures on the black rock and smoke creek deserts, Nevada", Science, 133(3461), 1359-1360. https://doi.org/10.1126/science.133.3461.1359.   DOI
45 Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part I: Experimental approach", Int. J. Rock Mech. Min. Sci., 38, 909-924. https://doi.org/10.1016/S1365-1609(01)00064-8.   DOI
46 Liu, D.S. (1965), The Loess Sedimentation of China, Science Press, Beijing, China (in Chinese).
47 Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Met. Eng., 48, 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::aid-nme956>3.0.co;2-l.   DOI
48 Eid, J., Taibi, S., Fleureau, J.M. and Hattab, M. (2015), "Drying, cracks and shrinkage evolution of a natural silt intended for a new earth building material. Impact of reinforcement", Constr. Build. Mater., 86(13), 120-132. https://doi.org/10.1016/j.conbuildmat.2015.03.115.   DOI
49 Kobayashi, S., Inomata, T., Kobayashi, H., Tsurekawa, S. and Watanabe, T. (2008), "Effects of grain boundary- and triple junction-character on intergranular fatigue crack nucleation in polycrystalline aluminum", J. Mater. Sci., 43, 3792-3799. https://doi.org/10.1007/s10853-007-2236-z.   DOI
50 Cornelis, W. M., Corluy, J., Medina, H., Diaz, J., Hartmann, R., Meirvenne, M. V. and Ruiz, M. E. (2006), "Measuring and modeling the soil shrinkage characteristic curve", Geoderma, 137(1-2), 179-191. https://doi.org/10.1016/j.geoderma.2006.08.022.   DOI
51 Lu, H., Li, J., Wang, W. and Wang, C. (2015), "Cracking and water seepage of Xiashu loess used as landfill cover under wetting-drying cycles", Environ. Earth Sci., 74(11), 7441-7450. https://doi.org/10.1007/s12665-015-4729-4.   DOI
52 Lu, Q., Peng, J., Zhixin, C. and Li, X.A. (2005), "Research on characteristics of cracks and fissures of loess and their distribution in loess plateau of China", J. Soil Water Conserv., 19(5), 191-194 (in Chinese with English abstract).   DOI
53 Mathieu, F., Hild, F. and Roux, S. (2011), "Fatigue crack propagation law measured from integrated digital image correlation: The example of Ti35 thin sheets", Proc. Eng., 10(4), 1091-1096. https://doi.org/10.1016/j.proeng.2011.04.180.   DOI
54 Peron, H. (2008), "Desiccation cracking of soils", Ph.D Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
55 Pan, B., Qian, K., Xie, H. and Asundi, A. (2009), "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review", Measmt Sci. Technol., 20(6), 062001. https://doi.org/10.1088/0957-0233/20/6/062001.   DOI
56 Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46, 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.   DOI
57 Peng, X., Horn, R., Peth, S. and Smucker, A. (2006), "Quantification of soil shrinkage in 2D by digital image processing of soil surface", Soil Till. Res., 91 (1-2), 173-180. https://doi.org/10.1016/j.still.2005.12.012.   DOI
58 Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77, 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.   DOI
59 DeCarlo, K.F. and Shokri, N. (2014), "Salinity effects on cracking morphology and dynamics in 3-D desiccating clays", Water Resour. Res., 50, 3052-3072. https://doi.org/10.1002/2013WR014424.   DOI
60 Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39, 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.   DOI
61 Wang, L.L., Tang, C.S., Shi, B., Cui, Y.J., Zhang, G.Q. and Hilary I. (2018), "Nucleation and propagation mechanisms of soil desiccation cracks", Eng. Geol., 238, 27-35. https://doi.org/10.1016/j.enggeo.2018.03.004.   DOI
62 Cordero, J., Cuadrado, A., Prat, P. and Ledesma, A. (2016), "Description of a field test involving cracking in a drying soil", Proceedings of the 3rd European Conference on Unsaturated Soils, Paris, France, December.
63 Sun, P. (2007), "Experimental research on rupture mechanisms of loess", Ph.D. Dissertation, Chang'an University, Xi'an, China. (in Chinese with English abstract).
64 Peron, H., Hueckel, T., Laloui, L. and Hu, L.B. (2009), "Fundamentals of desiccation cracking of finegrained soils: Experimental characterization and mechanisms identification", Can. Geotech. J., 46(10), 1177-1201. https://doi.org/10.1139/t09-054.   DOI
65 Zhang, X.D., Chen, Y.G., Ye, W.M., Cui, Y.J., Deng, Y.F. and Chen, B. (2017), "Effect of salt concentration on desiccation cracking behavior of GMZ bentonite", Environ. Earth Sci., 76, 531. https://doi.org/10.1007/s12665-017-6872-6.   DOI
66 Zhang, T.W., Deng, Y.F., Cui, Y.J., Lan, H.X., Zhang, F.Y. and Zhang, H.Y. (2019), "Porewater salinity effect on flocculation and desiccation cracking behaviour of kaolin and bentonite considering working condition", Eng. Geol., 251, 11-23. https://doi.org/10.1016/j.enggeo.2019.02.007.   DOI
67 Reyes, O. and Einstein, H.H. (1991), "Failure mechanisms of fractured rock-a fracture coalescence model", Proceedings of the 7th International Congress of Rock & Mechanics, Aachen, Germany, September.
68 Shannon, B., Kodikara, J. and Rajeev, P. (2015), "The use of restrained ring test method for soil desiccation studies", Geotech. Test. J., 38(1), 98-112. https://doi.org/10.1520/GTJ20130131.   DOI
69 Shen, B. and Barton, N. (2018), "Rock fracturing mechanisms around underground openings", Geomech. Eng., 16(1), 35-47. https://doi.org/10.12989/gae.2018.16.1.035.   DOI
70 Silvestri, V., Sarkis, G., Bekkouche, N. and Soulie, M. (1992), "Evapotranspiration, trees and damage to foundations in sensitive clays", Proceedings of the Canadian Geotechnical Conference, Toronto, Canada, October.
71 Sun, W., Du, H., Zhou, F. and Shao, J. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.   DOI
72 Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61, 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8.   DOI
73 Tang, C.S., Shi, B., Liu, C., Zhao, L.Z. and Wang, B.J. (2008), "Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils", Eng. Geol., 101(3-4), 204-217. https://doi.org/10.1016/j.enggeo.2008.05.005.   DOI
74 Tang, C.S., Shi, B., Liu, C., Suo, W.B. and Gao, L. (2011), "Experimental characterization of shrinkage and desiccation cracking in thin clay layer", Appl. Clay Sci., 52(1-2), 69-77. https://doi.org/10.1016/j.clay.2011.01.032.   DOI
75 Pasricha, K., Wad, U., Pasricha, R. and Ogale, S. (2009), "Parametric dependence studies on cracking of clay", Physica A, 388, 1352-1358. https://doi.org/10.1016/j.physa.2008.12.039.   DOI
76 Wu, T., Lan, J.W., Qiu, Q.W., He, H.J. and Li, H. (2017), "Behavior and influence of desiccation cracking in loess landfill covers", IOP Conf. Ser. Earth Environ. Sci., 94(1), 012084. https://doi.org/10.1088/1755-1315/94/1/012084.   DOI
77 Tang, C.S., Cui, Y.J., Tang, A.M. and Shi, B. (2010), "Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils", Eng. Geol., 114(3-4), 261-266. https://doi.org/10.1016/j.enggeo.2010.05.003.   DOI