Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.6.481

Fracture response and mechanisms of brittle rock with different numbers of openings under uniaxial loading  

Wu, Hao (School of Mines, China University of Mining and Technology)
Ma, Dan (School of Mines, China University of Mining and Technology)
Spearing, A.J.S. (School of Mines, China University of Mining and Technology)
Zhao, Guoyan (School of Resources and Safety Engineering, Central South University)
Publication Information
Geomechanics and Engineering / v.25, no.6, 2021 , pp. 481-493 More about this Journal
Abstract
Hazardous failure phenomena such as rock bursts and slabbing failure frequently occur in deep hardrock tunnels, thus understanding the failure phenomena and mechanisms of the stress regime on tunnels is extremely critical. In this study, the tunnel system in a rock mass was physically modelled as a number of scaled openings in rock specimens, and the mechanical behavior of specimens having one to four horseshoe-shaped openings under uniaxial compression were investigated systematically. During the tests, the digital image correlation (DIC) and acoustic emission (AE) techniques were jointly employed to monitor the fracture response of specimens. After which, the stress distributions in the specimens were numerically analyzed and the stress concentration factor on the periphery of the opening was calculated. The results show that the number of openings have a significant impact on the weakening effect of rock mechanical properties. The progressive cracking process of the specimens with openings evolves from first-tensile cracks through second-tensile cracks and spalling cracks to shear cracks, and the crack threshold stresses are measured. Two failure modes are formed: shear failure and shear-tensile failure. According to the stress distribution law around the opening, the crack initiation mechanism can be fully explained. This research provides an insight to failure mechanism of hardrock tunnel.
Keywords
hardrock tunnel; fracture behavior; failure mechanism; digital image correlation; acoustic emission; stress distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fonseka, G.M., Murrell, S.A.F. and Barnes, P. (1985), "Scanning electron microscope and acoustic emission studies of crack development in rocks", Int. J. Rock Mech. Min. Sci., 22(5), 273-289. https://doi.org/10.1016/0148-9062(85)92060-1.   DOI
2 Aker, E., Kuhn, D., Vavrycuk, V., Soldal, M. and Oye, V. (2014), "Experimental investigation of acoustic emissions and their moment tensors in rock during failure", Int. J. Rock Mech. Min. Sci., 70, 286-295. https://doi.org/10.1016/j.ijrmms.2014.05.003.   DOI
3 Carter, B.J., Lajtai, E.Z. and Petukhov, A. (1991), "Primary and remote fracture around underground cavities", Int. J. Numer. Anal. Met., 15(1), 21-40. https://doi.org/10.1002/nag.1610150103.   DOI
4 Dang, W.G., Konietzky, H., Herbst, M. and Fruhwirt T. (2020), "Cyclic frictional responses of planar joints under cyclic normal load conditions: Laboratory tests and numerical simulations", Rock Mech. Rock Eng., 53, 337-364. https://doi.org/10.1007/s00603-019-01910-9.   DOI
5 Wong, R.H.C., Lin, P. and Tang, C.A. (2006), "Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression", Mech. Mater., 38(1-2), 142-159. https://doi.org/10.1016/j.mechmat.2005.05.017.   DOI
6 Tao, M., Ma, A., Cao, W.Z., Li, X.B. and Gong, F.Q. (2017), "Dynamic response of pre-stressed rock with a circular cavity subject to transient loading", Int. J. Rock Mech. Min. Sci., 99, 1-8. https://doi.org/10.1016/j.ijrmms.2017.09.003.   DOI
7 Wagner, H. (2019), "Deep mining: A rock engineering challenge", Rock Mech. Rock Eng., 52(5), 1417-1446. https://doi.org/10.1007/s00603-019-01799-4.   DOI
8 Wang, S.Y., Sun, L., Yang, C.H., Yang, S.Q. and Tang, C.A. (2013), "Numerical study on static and dynamic fracture evolution around rock cavities", J. Rock Mech. Geotech. Eng., 5(4), 262-276. https://doi.org/10.1016/j.jrmge.2012.10.003.   DOI
9 Zakharov, E.V. and Kurilko, A.S. (2014), "Effects of low temperatures on strength and power input into rock failure", Sci. Cold Arid Reg., 6(5), 0455-0460. https://doi.org/10.3724/SP.J.1226.2014.00455.   DOI
10 Westphal, H., Surholt, I., Kiesl, C., Thern, H.F. and Kruspe, T. (2005), "NMR measurements in carbonate rocks: Problems and an approach to a solution", Pure Appl. Geophys., 162, 549-570. https://doi.org/10.1007/s00024-004-2621-3.   DOI
11 Wu, H., Zhao, G.Y. and Liang, W.Z. (2019), "Mechanical response and fracture behavior of brittle rocks containing two horseshoe-shaped holes under uniaxial loading", Appl. Sci., 9(24), 5327. https://doi.org/10.3390/app9245327.   DOI
12 Martin, C.D. (1993), "Strength of massive Lac du Bonnet granite around underground openings", Ph.D. Dissertation, University of Manitoba, Manitoba, Canada.
13 Jespersen, C., Maclaughlin, M. and Hudyma, N. (2010), "Strength, deformation modulus and failure modes of cubic analog specimens representing macroporous rock", Int. J. Rock Mech. Min. Sci., 47(8) 1349-1356. https://doi.org/10.1016/j.ijrmms.2010.08.015.   DOI
14 Lee, H., Oh, T.M. and Park, C. (2020a), "Analysis of permeability in rock fracture with effective stress at deep depth", Geomech. Eng., 22(5), 375-384. http://dx.doi.org/10.12989/gae.2020.22.5.375.   DOI
15 Lotidis, M.A., Nomikos, P.P. and Sofianos, A.I. (2019), "Numerical study of the fracturing process in marble and plaster hollow plate specimens subjected to uniaxial compression", Rock Mech. Rock Eng., 52(11), 4361-4386. https://doi.org/10.1007/s00603-019-01884-8.   DOI
16 Peng, L., Wong, R.H.C. and Tang, C.A. (2015), "Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes", Int. J. Rock Mech. Min. Sci., 77, 313-327. https://doi.org/10.1016/j.ijrmms.2015.04.017.   DOI
17 Hoek, E. (1965), "Rock fracture under static stress conditions", Research Report No. MEG383, University of Cape Town, Pretoria, The Republic of South Africa.
18 Mellor, M. and Hawkes, I. (1971), "Measurement of tensile strength by diametral compression of discs and annuli", Eng. Geol., 5(3), 173-225. https://doi.org/10.1016/0013-7952(71)90001-9.   DOI
19 Ma, D., Zhang, J.X., Duan, H.Y., Huang, Y.L., Li, M., Sun, Q. and Zhou, N. (2021), "Reutilization of gangue wastes in underground backfilling mining: Overburden aquifer protection", Chemosphere, 264(1), 128400. https://doi.org/10.1016/j.chemosphere.2020.128400.   DOI
20 Maruvanchery, V. and Kim E. (2020), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng., 17(1), 57-67. http://dx.doi.org/10.12989/gae.2019.17.1.057.   DOI
21 Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta Metall. Sin., 34(3), 511-526. https://doi.org/10.1016/0001-6160(86)90087-8.   DOI
22 Tang, C.A., Wong, R.H.C., Chau, K.T. and Lin, P. (2005), "Modeling of compression-induced splitting failure in heterogeneous brittle porous solids", Eng. Fract. Mech., 72(4), 597-615. https://doi.org/10.1016/j.engfracmech.2004.04.008.   DOI
23 Tasdemir M.A., Maji, A.K. and Shah S.P. (1990), "Crack propagation in concrete under compression", J. Eng. Mech., 116(5), 1058-1076. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1058).   DOI
24 Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract, 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x.   DOI
25 Ulusay, R. and Hudson, J.A. (2007), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, ISRM Turkish National Group, Ankara, Turkey.
26 Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mechanica Sinica, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.   DOI
27 Huang, Y.H., Yang S.Q. and Tian, W.L. (2019), "Cracking process of a granite specimen that contains multiple pre-existing holes under uniaxial compression", Fatigue Fract. Eng. M., 42(6), 1341-1356. https://doi.org/10.1111/ffe.12990.   DOI
28 La, Y.S. and Kim, B. (2020), "Stability evaluation of a double-deck tunnel with diverging section", Geomech. Eng., 21(2), 123-132. http://doi.org/10.12989/gae.2020.21.2.123.   DOI
29 Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in precracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6) 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.   DOI
30 Lee, K.Y., Lee, I.M. and Shin, Y.J. (2020b), "Quantitative assessment of depth and extent of notch brittle failure in deep tunneling using inferential statistical analysis", Geomech. Eng., 21(2), 201-206. http://doi.org/10.12989/gae.2020.21.2.201.   DOI
31 Zhu, W.C., Liu, J.S., Tang, C.A., Zhao, X.D. and Brady, B.H. (2005), "Simulation of progressive fracturing processes around underground excavations under biaxial compression", Tunn. Undergr. Sp. Tech., 20(3), 231-247. https://doi.org/10.1016/j.tust.2004.08.008.   DOI
32 Wu, Y.H., Cheng, L.S., Killough, J., Huang, S.J., Fang, S.D., Jia, P., Cao, R.Y. and Xue, Y.C. (2021), "Integrated characterization of the fracture network in fractured shale gas Reservoirs-Stochastic fracture modeling, simulation and assisted history matching", J. Petrol. Sci. Eng., 205, 108886. https://doi.org/10.1016/j.petrol.2021.108886.   DOI
33 Yamaguchi, I. (1981), "A laser-speckle strain gauge", J. Phys. E Sci. Instrum., 14(11), 1270-1273. https://doi.org/10.1088/0022-3735/14/11/012.   DOI
34 Zeng, W., Yang, S.Q. and Tian, W.L. (2018), "Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression", Eng. Fract. Mech., 200, 430-450. https://doi.org/10.1016/j.engfracmech.2018.08.016.   DOI
35 Zerhouny, M., Fadil, A. and Hakdaoui, M. (2018) "Underground space utilization in the urban land-use planning of Casablanca (Morocco)", Land, 7(4), 143. https://doi.org/10.3390/land7040143.   DOI
36 Wang, S.H., Lee, C.I., Ranjith, P.G. and Tang, C.A. (2009), "Modeling the effects of heterogeneity and anisotropy on the excavation damaged/disturbed zone (EDZ)", Rock Mech. Rock Eng., 42, 229-258. https://doi.org/10.1007/s00603-009-0177-3.   DOI
37 Ma, D., Duan, H.Y., Li, W.X., Zhang, J.X., Liu, W.T. and Zhou, Z.L. (2020), "Prediction of water inflow from fault by particle swarm optimization-based modified grey models", Environ. Sci. Pollut. Res., 27, 42051-42063. https://doi.org/10.1007/s11356-020-10172-w.   DOI
38 Luo, Y. (2020), "Influence of water on mechanical behavior of surrounding rock in hard-rock tunnels: An experimental simulation", Eng. Geol., 277, 105816. https://doi.org/10.1016/j.enggeo.2020.105816.   DOI
39 Wennberg, O.P., Rennan, L. and Basquet, R. (2009), "Computed tomography scan imaging of natural open fractures in a porous rock; geometry and fluid flow", Geophys. Prospect., 57(2), 239-249. https://doi.org/10.1111/j.1365-2478.2009.00784.x.   DOI
40 Fakhimi, A., Carvalho, F., Ishida, T. and Labuz, J.F. (2002), "Simulation of failure around a circular opening in rock", Int. J. Rock Mech. Min. Sci., 39, 507-515. https://doi.org/10.1016/S1365-1609(02)00041-2.   DOI
41 Wang, S.Y., Sloan, S.W., Sheng, D.C. and Tang, C.A. (2012), "Numerical analysis of the failure process around a circular opening in rock", Comput. Geotech., 39, 8-16. https://doi.org/10.1016/j.compgeo.2011.08.004.   DOI
42 Weng, L., Li, X.B., Shang, X.Y. and Xie, X.F. (2018), "Fracturing behavior and failure in hollowed granite rock with static compression and coupled static-dynamic loads", Int. J. Geomech., 18(6), 04018045. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001132.   DOI
43 Wu, H., Kulatilake, P.H.S.W., Zhao, G.Y., Liang, W.Z. and Wang, E.J. (2019), "A comprehensive study of fracture evolution of brittle rock containing an horseshoe-shaped cavity under uniaxial compression", Comput. Geotech., 116, 103219. https://doi.org/10.1016/j.compgeo.2019.103219.   DOI
44 Wu, H., Zhao, G.Y. and Liang, W.Z. (2019), "Investigation of cracking behavior and mechanism of sandstone specimens with a hole under compression", Int. J. Mech. Sci., 163, 105084. https://doi.org/10.1016/j.ijmecsci.2019.105084.   DOI
45 Dzik, E.J. and Lajtai, E.Z. (1996), "Primary fracture propagation from circular cavities loaded in compression", Int. J. Fract., 79(1), 49-64. https://doi.org/10.1007/BF00017712.   DOI
46 Choi, S. and Shah, S.P. (1997), "Measurement of deformations on concrete subjected to compression using image correlation", Exp. Mech., 37(3), 307-313. https://doi.org/10.1007/BF02317423.   DOI
47 Cress, G.O., Brady, B.T. and Rowell, G.A. (1987), "Sources of electromagnetic radiation from fracture of rock samples in the laboratory", Geophys. Res. Lett., 14(4), 331-334. https://doi.org/10.1029/GL014i004p00331.   DOI
48 Dang, W.G., Wu, W., Konietzky, H. and Qian, J.Y. (2019), "Effect of shear-induced aperture evolution on fluid flow in rock fractures", Comput. Geotech., 114, 103152. https://doi.org/10.1016/j.compgeo.2019.103152.   DOI
49 Cao, R.H., Cao, P., Lin, H., Fan, X., Zhang, C.Y. and Liu, T.Y. (2019), "Crack Initiation, propagation, and failure characteristics of jointed rock or rock-like specimens: A review", Adv. Civ. Eng., 6975751. https://doi.org/10.1155/2019/6975751.   DOI
50 Wu, H., Zhao, G.Y. and Liang, W.Z. (2020), "Mechanical properties and fracture characteristics of pre-holed rocks subjected to uniaxial loading: A comparative analysis of five hole shapes", Theor. Appl. Fract. Mec., 105, 102433. https://doi.org/10.1016/j.tafmec.2019.102433.   DOI