Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.5.383

Investigating of free vibration behavior of bidirectional FG beams resting on variable elastic foundation  

Benaberrahmane, Ismail (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Benyoucef, Samir (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Sekkal, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Mekerbi, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Bouiadjra, Rabbab Bachir (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Selim, Mahmoud M. (Department of Mathematics, Al-Aflaj College of Science and Humanities, Prince Sattam bin Abdulaziz University)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Hussain, Muzamal (Department of Mathematics, Government College University Faisalabad)
Publication Information
Geomechanics and Engineering / v.25, no.5, 2021 , pp. 383-394 More about this Journal
Abstract
In the present study, the free vibration of bidirectional functionally graded (FG) beams resting on variable elastic foundation are comprehensively investigated. The beam's behavior is modeled using 2D displacement field that contain undetermined integral terms and involves a reduced unknown functions. The material properties of the FG beam are assumed to be graded in both the thickness and longitudinal directions according to a power law. The beams are considered simply supported and resting on variable elastic foundation. The differential equation system governing the free vibration behavior of bidirectional beams is derived based on the Hamilton principle. The problem is then solved using the Navier solution for a simply supported beam. The accuracy of the used model can be noticed by comparing it with other solutions available in the literature where a good conformance was obtained. A detailed parametric study is conducted to explore the influences of material composition and variable elastic parameters on the vibration characteristics of the beams. The results reveal that the grading indexes in one or both directions as well as the parameters of the elastic foundation strongly impact the fundamental frequencies.
Keywords
BDFG beams; 2D theory; variable elastic foundation; free vibration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
2 Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. http://doi.org/10.12989/cac.2019.24.1.037   DOI
3 Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-Art", Trends Civ. Eng. Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.   DOI
4 Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.   DOI
5 Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120.   DOI
6 Faroughi, S., Rahmani, A. and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model", Appl. Math. Model., 80, 169-190. https://doi.org/10.1016/j.apm.2019.11.040.   DOI
7 Nemati, A.R. and Mahmoodabadi, M.J. (2019), "Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments", Arch. Appl. Mech., 1-33. https://doi.org/10.1007/s00419-019-01646-6.   DOI
8 Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mech., 228(1), 141-155. http://doi.org/10.1007/s00707-016-1705-3.   DOI
9 Ouldlarbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A., (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713.   DOI
10 Fariborz, J. and Batra, R.C. (2019), "Free vibration of bidirectional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036.   DOI
11 Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. http://doi.org/10.12989/sss.2020.26.2.25.   DOI
12 Hadji, L. and Avcar, M. (2021), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. http://doi.org/10.22055/JACM.2020.35328.2628.   DOI
13 Hao, D. and Wei, C. (2016), "Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams", Compos. Struct., 141, 253-263. https://doi.org/10.1016/j.compstruct.2016.01.051.   DOI
14 Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.   DOI
15 Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. http://doi.org/10.12989/scs.2019.33.6.865.   DOI
16 Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.   DOI
17 Kar, V.R. and Panda, S.K. (2020), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.   DOI
18 Rahmani, M., Mohammadi, Y. and Kakavand, F. (2019), "Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings", Steel Compos. Struct., 32(2), 239-252. http://doi.org/10.12989/scs.2019.32.2.239.   DOI
19 Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.   DOI
20 Al-Basyouni, K. S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.   DOI
21 Shahmohammadi, M.A., Azhari, M. and Saadatpou, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. http://doi.org/10.12989/scs.2020.34.3.361.   DOI
22 Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.   DOI
23 Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.   DOI
24 simsek, M. (2016), "Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions", Compos. Struct., 149, 304-314. https://doi.org/10.1016/j.compstruct.2016.04.034.   DOI
25 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.   DOI
26 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.   DOI
27 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
28 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
29 Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.   DOI
30 simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. http://doi.org/10.1016/j.compstruct.2015.08.021.   DOI
31 Bachir Bouiadjra, R., Bachiri, A., Benyoucef, S., Fahsi, B. and Bernard, F. (2020), "An investigation of the thermodynamic effect of FG beam on elastic foundation", Struct. Eng. Mech., 76(1), 115-127. https://doi.org/10.12989/sem.2020.76.1.115.   DOI
32 Tang, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads", Compos. Struct., 225,111076. https://doi.org/10.1016/j.compstruct.2019.111076.   DOI
33 Li, J., Guan, Y., Wang, G., Zhao, G., Lin, J., Naceur, H. and Coutellier, D. (2018), "Meshless modeling of bending behavior of bi-directional functionally graded beam structures", Compos. Part B Eng., 155, 104-111. https://doi.org/10.1016/j.compositesb.2018.08.029.   DOI
34 Lu, Y. and Chen, X. (2020), "Nonlinear parametric dynamics of bidirectional functionally graded beams", Shock Vib., 8840833, https://doi.org/10.1155/2020/8840833.   DOI
35 Si Tayeb, T., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Adda Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.   DOI
36 Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829.   DOI
37 Demir., C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.   DOI
38 Karamanli, A. (2017a), "Elastostatic analysis of two-directional functionally graded beams using various beam theories and symmetric smoothed particle hydrodynamics method", Compos. Struct., 160, 653-669. http://doi.org/10.1016/j.compstruct.2016.10.065.   DOI
39 Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.   DOI
40 Shafiei, N., Mirjavadi, S.S., Mohasel Afshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.   DOI
41 Chami., K., Massafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. http://doi.org/10.12989/eas.2020.19.2.091.   DOI
42 Bhattacharya, S. and Das, D. (2019), "Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory", Compos. Struct., 215, 471-492. https://doi.org/10.1016/j.compstruct.2019.01.080.   DOI
43 Bachiri, A., Bourada, M., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2018), "Thermodynamic effect on the bending response of elastic foundation FG plate by using a novel four variable refined plate theory", J. Therm. Stresses, 41(8), 1042-1062. https://doi.org/10.1080/01495739.2018.1452169.   DOI
44 Benferhat, R., Daouadji, T.H. and Adim, B. (2016), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107.   DOI
45 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.   DOI
46 Karamanli, A. (2017b), "Bending behaviour of two directional functionally gradedsandwich beams by using a quasi-3d shear deformation theory", Compos. Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046   DOI
47 Tran, T.T. and Nguyen D.K. (2018), "Free vibration analysis of 2-DFGM beams in thermal environment based on a newthird-order shear deformation theory", Vietnam J. Mech., 40(2), 121-140. https://doi.org/10.15625/0866-7136/10503.   DOI
48 Rahmani, A., Faroughi, S. and Friswell, M.I. (2020), "The vibration of two-dimensional imperfect functionally graded(2D-FG) porous rotating nanobeams based on general nonlocaltheory", Mech. Syst. Signal Process., 144, 106854. https://doi.org/10.1016/j.ymssp.2020.106854.   DOI
49 Ali Rachedi, M., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. http://doi.org/10.12989/gae.2020.22.1.065.   DOI
50 Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. http://doi.org/10.12989/gae.2020.22.4.361.   DOI
51 Eisenberger, M. and Clastornik, J. (1987), "Vibrations and buckling of a beam on a variable Winkler elastic foundation", J. Sound Vib., 115, 233-241. https://doi.org/10.1016/0022-460X(87)90469-X.   DOI
52 Civalek, O., Dastjerdi, S., Akbas, S. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci. https://doi.org/10.1002/mma.7069.   DOI
53 Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M., (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.   DOI
54 Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel-Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.   DOI
55 Zhou, D. (1993), "A general solution to vibrations of beams on variable Winkler elastic foundation", Comput. Struct., 47(1), 83-90. https://doi.org/10.1016/0045-7949(93)90281-H.   DOI
56 Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.   DOI
57 Wang, Z.H., Wang, X.H., Xu, G.D., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. http://doi.org/10.1016/j.compstruct.2015.09.013.   DOI
58 Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets", Compos. Struct.,252, 112700. https://doi.org/10.1016/j.compstruct.2020.112700   DOI
59 Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.   DOI
60 Madenci, E., Ozkilic, T.O. and Gemi, L. (2020), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.   DOI
61 Madenci, E. and Ozutok, A. (2017), "Variational approximate and mixed-finite element solution for static analysis of laminated composite plates", Solid State Phenom., 267, 35-39. https://doi.org/10.4028/www.scientific.net/SSP.267.35   DOI
62 Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.   DOI
63 Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.   DOI
64 Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A., (2019), "Analytical study of bending and free vibration response of functionally graded beam resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.   DOI
65 Madenci, E., Ozkilic, T.O. and Gemi, L. (2020), "Theoretical investigation on static analysis of pultruded GFRP composite beams", Akademik Platform Muhendislik ve Fen Bilimleri Dergisi, 8(3), 483-490. https://doi.org/10.21541/apjes.734770.   DOI