Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.3.265

On determining seismic anchor force of anchoring frame structure supporting three-stage slope  

Lin, Yu-liang (School of Civil Engineering, Central South University)
Lu, Li (School of Civil Engineering, Central South University)
Li, Ying-xin (School of Civil Engineering, Central South University)
Xue, Yuan (China Railway Eryuan Engineering Group Co. Ltd.)
Feng, Zhi-jun (China Railway Eryuan Engineering Group Co. Ltd.)
Wang, Zhi-meng (China Railway Eryuan Engineering Group Co. Ltd.)
Yang, Guo-lin (School of Civil Engineering, Central South University)
Publication Information
Geomechanics and Engineering / v.22, no.3, 2020 , pp. 265-275 More about this Journal
Abstract
As a flexible supporting structure, the anchoring frame structure is widely adopted to support multistage slopes in high earthquake-intensity area for its effectiveness and practicality. The previous study indicates that the anchor of anchoring frame structure is the most likely to be damaged during earthquakes. It is crucial to determine the pull-out capacity of anchor against seismic force for the seismic design of anchoring frame structure. In this study, an analytical model of a three-stage slope supported by anchoring frame structure is established, and the upper bound method of limit analysis is applied to deduce the seismic anchor force of anchoring frame structure. The pull-out capacity of anchor against seismic force of anchoring frame structure at each stage is obtained by computer programming. The proposed method is proved to be reasonable and effective compared with the existing published solution. Besides, the influence of main parameters on the pull-out capacity of anchor against seismic force is analyzed to provide some recommendations for the seismic design of anchoring frame structure.
Keywords
upper bound limit analysis; seismic anchor force; anchoring frame structure; three-stage slope;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Yan, X. and Liang, L. (2019), "Fatigue performance of post-installed anchorage beams", Constr. Build. Mater., 229, 116597. http://doi.org/10.1016/j.conbuildmat.2019.07.323.   DOI
2 Yazdandoust, M. (2017), "Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test", Soil Dyn. Earthq. Eng., 97, 216-232. https://doi.org/10.1016/j.soildyn.2017.03.011.   DOI
3 Yazdandoust, M. (2019a), "Assessment of horizontal seismic coefficient for three different types of reinforced soil structure using physical and analytical modeling", Int. J. Geomech., 19(7), 04019070. http://doi.org/10.1061/(ASCE)GM.1943-5622.0001344.   DOI
4 Yazdandoust, M. (2019b), "Shaking table modeling of MSE/soil nail hybrid retaining walls", Soils Found., 59(2), 241-252. https://doi.org/10.1016/j.sandf.2018.05.013.   DOI
5 Zamiran, S. and Osouli, A. (2018), "Seismic motion response and fragility analyses of cantilever retaining walls with cohesive backfill", Soils Found., 58(2), 412-426. http://doi.org/10.1016/j.sandf.2018.02.010.   DOI
6 Anastasopoulos, I., Georgarakos, T., Georgiannou, V., Drosos, V. and Kourkoulis, R. (2010), "Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model", Soil Dyn. Earthq. Eng., 30(10), 1089-1105. https://doi.org/10.1016/j.soildyn.2010.04.020.   DOI
7 Zhao, X.Y., Salgado, R. and Prezzi, M. (2014), "Centrifuge modelling of combined anchors for slope stability", P. I. Civ. Eng. Geotech., 167(4), 357-370. https://doi.org/10.1680/geng.12.00076.   DOI
8 Zhu, D.Y., Lee, C.F., Chan, D.H. and Jiang, H.D. (2005), "Evaluation of the stability of anchor-reinforced slopes", Can. Geotech. J., 42(5), 1342-1349. https://doi.org/10.1139/t05-060.   DOI
9 Aminpoor, M.M. and Ghanbari, A. (2014), "Design charts for yield acceleration and seismic displacement of retaining walls with surcharge through limit analysis", Struct. Eng. Mech., 52(6), 1225-1256. https://doi.org/10.12989/sem.2014.52.6.1225.   DOI
10 Aminpour, M.M., Maleki, M. and Ghanbari, A. (2017), "Investigation of the effect of surcharge on behavior of soil slopes", Geomech. Eng., 13(4), 653-669. https://doi.org/10.12989/gae.2017.13.4.653.   DOI
11 Baker, R., Shukha, R., Operstein, V. and Frydman, S. (2006), "Stability charts for pseudo-static slope stability analysis", Soil Dyn. Earthq. Eng., 26(9), 813-823. https://doi.org/10.1016/j.soildyn.2006.01.023.   DOI
12 Bi, J., Luo, X., Zhang, H. and Shen, H. (2019), "Stability analysis of complex rock slopes reinforced with prestressed anchor cables and anti-shear cavities", B. Eng. Geol. Environ., 78(3), 2027-2039. http://doi.org/10.1007/s10064-017-1171-8.   DOI
13 Cheng, X.S., Dowding, C.H. and Tian, R.R. (2014), "New methods of safety evaluation for rock/soil mass surrounding tunnel under earthquake", J. Cent. South Univ., 21(7), 2935-2943. https://doi.org/10.1007/s11771-014-2260-5.   DOI
14 Biondi, G., Cascone, E. and Maugeri, M. (2014), "Displacement versus pseudo-static evaluation of the seismic performance of sliding retaining walls", B. Earthq. Eng., 12(3), 1239-1267. https://doi.org/10.1007/s10518-013-9542-4.   DOI
15 Blanco-Fernandez, E., Castro-Fresno, D., Diaz, J.J.D. and Lopez-Quijada, L. (2011), "Flexible systems anchored to the ground for slope stabilisation: Critical review of existing design methods", Eng. Geol., 122(3-4), 129-145. https://doi.org/10.1016/j.enggeo.2011.05.014.   DOI
16 Bray, J.D. and Travasarou, T. (2009), "Pseudostatic coeffificient for use in simplifified seismic slope stability evaluation", J. Geotech. Geoenviron. Eng., 135(9), 1336-1340. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000012.   DOI
17 Du, W.Q. and Wang, G. (2016), "A one-step Newmark displacement model for probabilistic seismic slope displacement hazard analysis", Eng. Geol., 205, 12-23. https://doi.org/10.1016/j.enggeo.2016.02.011.   DOI
18 Evirgen, B., Tuncan, A. and Tuncan, M. (2019), "Development of umbrella anchor approach in terms of the requirements of field application", Geomech. Eng., 18(3), 277-289. https://doi.org/10.12989/gae.2019.18.3.277.   DOI
19 Greco, V.R. (2014), "Analytical solution of seismic pseudo-static active thrust acting on fascia retaining walls", Soil Dyn. Earthq. Eng., 57, 25-36. https://doi.org/10.1016/j.soildyn.2013.09.022.   DOI
20 Gursoy, S. and Durmus, A. (2009), "Investigation of linear and nonlinear of behaviours of reinforced concrete cantilever retaining walls according to the earthquake loads considering soil-structures interactions", Struct. Eng. Mech., 31(1), 75-91. https://doi.org/10.12989/sem.2009.31.1.075.   DOI
21 Lee, M.G., Ha, J.G., Jo, S.B., Park, H.J. and Kim, D.S. (2017), "Assessment of horizontal seismic coefficient for gravity quay walls by centrifuge tests" Geotech. Lett., 7(2), 211-217. http://doi.org/10.1680/jgele.17.00005.   DOI
22 Huang, C.C. and Chen, Y.H. (2004), "Seismic stability of soil retaining walls situated on slope", J. Geotech. Geoenviron. Eng., 130(1), 45-57. http://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(45).   DOI
23 Iskander, M., Chen, Z.B., Omidvar, M. and Guzman, I. (2013), "Rankine pseudo-static earth pressure for c-phi soils", Mech. Res. Commun., 51, 51-55. http://doi.org/10.1016/j.mechrescom.2013.04.010.   DOI
24 Karray, M., Hussien, M.N., Delisle, M.C. and Ledoux, C. (2018), "Framework to assess pseudo-static approach for seismic stability of clayey slopes", Can. Geotech. J., 55(12), 1860-1876. https://doi.org/10.1139/cgj-2017-0383.   DOI
25 Lee, J., Liu, Q. and Park, H.J. (2019), "Effect of earthquake motion on the permanent displacement of embankment slopes", KSCE J. Civ. Eng., 23(10), 4174-4189. http://doi.org/10.1007/s12205-019-1833-0.   DOI
26 Lin, Y.L., Cheng, X.M., Yang, G.L. and Li, Y. (2018), "Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test", Soil Dyn. Earthq. Eng., 115, 352-364. http://doi.org/10.1016/j.soildyn.2018.07.028.   DOI
27 Lin, Y.L., Li, Y.X., Yang, G.L. and Li, Y. (2017a), "Experimental and numerical study on the seismic behavior of anchoring frame beam supporting soil slope on rock mass", Soil Dyn. Earthq. Eng., 98, 12-23. http://doi.org/10.1016/j.soildyn.2017.04.008.   DOI
28 Lin, Y.L., Li, Y.X., Zhao, L.H. and Yang, T.Y. (2020a), "Investigation on the seismic response of a three-stage soil slope supported by the anchor frame structure", J. Cent. South Univ., 27(4), 1290-1305. http://doi.org/10.1007/s11771-020-4367-1.   DOI
29 Lin, Y.L., Yang, G.L., Yang, X., Zhao, L.H., Shen, Q. and Qiu, M.M. (2017b), "Response of gravity retaining wall with anchoring frame beam supporting a steep rock slope subjected to earthquake loading", Soil Dyn. Earthq. Eng., 92, 633-649. http://doi.org/10.1016/j.soildyn.2016.11.002.   DOI
30 Lin, Y.L., Lu, L. and Yang, G.L. (2020b), "Seismic behavior of a single-form lattice anchoring structure and a combined retaining structure supporting soil slope: A comparison", Environ. Earth Sci., 79(3), 78. https://doi.org/10.1007/s12665-020-8817-8.   DOI
31 Lin, Y.L., Zhao, L.H., Yang, T.Y., Yang, G.L. and Chen X.B. (2020c), "Investigation on seismic behavior of combined retaining structure with different rock shapes", Struct. Eng. Mech., 73(5), 599-612. http://doi.org/10.12989/sem.2020.73.5.599.   DOI
32 Ling, H.I., Leshchinsky, D., Wang, J.P., Mohri, Y. and Rosen, A. (2009), "Seismic response of geocell retaining walls: Experimental studies", J. Geotech. Geoenviron. Eng., 135(4), 515-524. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(515).   DOI
33 Motlagh, A.T., Ghanbari, A., Maedeh, P.A. and Wu, W. (2018), "A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes", Earthq. Struct., 15(6), 687-699. https://doi.org/10.12989/eas.2018.15.6.687.   DOI
34 Nian, T.K., Jiang, J.C., Wang, F.W., Yang, Q. and Luan, M.T. (2016), "Seismic stability analysis of slope reinforced with a row of piles", Soil Dyn. Earthq. Eng., 84, 83-93. https://doi.org/10.1016/j.soildyn.2016.01.023.   DOI
35 Steedman, R.S. and Zeng, X. (1990), "The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall", Geotechnique, 40(1), 103-112. http://doi.org/10.1016/0148-9062(90)93144-B.   DOI
36 Nouri, H., Fakher, A. and Jones, C.J.F.P. (2008), "Evaluating the effects of the magnitude and amplification of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium horizontal slices method", Geotext. Geomembranes, 26(3), 263-278. https://doi.org/10.1016/j.geotexmem.2007.09.002.   DOI
37 Ranjbar, K.A., Ganjian, N. and Askari, F.J. (2019), "Pseudo-static analysis of cantilever retaining walls using upper bound limit analysis approach", J. Cent. South Univ., 26(1), 241-255. https://doi.org/10.1007/s11771-019-3997-7.   DOI
38 Shi, K.Y., Wu, X.P., Liu, Z. and Dai, S.L. (2019), "Coupled calculation model for anchoring force loss in a slope reinforced by a frame beam and anchor cables", Eng. Geol., 260, 105245. http://doi.org/10.1016/j.enggeo.2019.105245.   DOI
39 Stamatopoulos, C.A., Bassanou, M., Brennan, A.J. and Madabhushi, G. (2007), "Mitigation of the seismic motion near the edge of cliff-type topographies", Soil Dyn. Earthq. Eng., 27(12), 1082-1100. http://doi.org/10.1016/j.soildyn.2007.01.012.   DOI
40 Stamatopoulos, C.A. and Bassanou, M. (2009), "Mitigation of the seismic motion near the edge of cliff-type topographies using anchors and piles", B. Earthq. Eng., 7(1), 221-253. http://doi.org/10.1007/s10518-008-9099-9.   DOI
41 Takaji, K. (2019). "Energy-based Newmark method for earthquake-induced slope displacements", Soil Dyn. Earthq. Eng., 121, 121-134. http://doi.org/10.1016/j.soildyn.2019.02.027.   DOI
42 Yan, M., Xia, Y., Liu, T. and Bowa, V.M. (2019), "Limit analysis under seismic conditions of a slope reinforced with prestressed anchor cables", Comput. Geotech., 108, 226-233. http://doi.org/10.1016/j.compgeo.2018.12.027.   DOI
43 Xie, S., Gao, M., Chen, D., Sun, Y., Pan, H., Su, H. and Lan, S. (2018), "Stability influence factors analysis and construction of a deep beam anchorage structure in roadway roof", Int. J. Min. Sci. Tech., 28(3), 445-451. http://doi.org/10.1016/j.ijmst.2017.11.007.   DOI