Browse > Article
http://dx.doi.org/10.12989/gae.2020.21.1.011

Bearing capacity of shallow foundations on the bilayer rock  

Alencar, Ana S. (ETSI Caminos, C. y P., Technical University of Madrid (UPM))
Galindo, Ruben A. (ETSI Caminos, C. y P., Technical University of Madrid (UPM))
Melentijevic, Svetlana (Faculty of Geology, Complutense University of Madrid (UCM))
Publication Information
Geomechanics and Engineering / v.21, no.1, 2020 , pp. 11-21 More about this Journal
Abstract
The traditional formulations for estimation of bearing capacity in rock mechanics assume a homogeneous and isotropic rock mass. However, it is common that the rock mass consists of different layers of different rock properties or of the same rock matrix with distinct geotechnical quality levels. The bearing capacity of a heterogeneous rock is estimated traditionally through the weighted average. In this paper, the solution of the weighted average is compared to the finite difference method applied to a bilayer rock mass. The influence of different parameters such as the thickness of the layers, the rock type, the uniaxial compressive strength and the overall geotechnical quality of the rock mass on the bearing capacity of a bilayer rock mass is analyzed. A parametric study by finite difference method is carried out to develop a bearing capacity factor in function of the layer thickness and the rock mass quality expressed in terms of the geological strength index, which is presented in a form of a chart. Therefore, this correlation factor allows estimating the bearing capacity of a rock mass that is formed by two layers with distinct GSI, depending on the bearing capacity of the rock mass formed only by the upper layer and considered by that way as homogenous and isotropic rock mass.
Keywords
bearing capacity; bilayer; Hoek and Brown material; finite difference method; shallow foundation; GSI;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Marinos, V. and Carter, T.G. (2018), "Maintaining geological reality in application of GSI for design of engineering structures in rock", Eng. Geol., 239, 282-297. https://doi.org/10.1016/j.enggeo.2018.03.022.   DOI
2 Merifield, R.S., Lyamin, A.V. and Sloan, S.W. (2006), "Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 43(6), 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001.   DOI
3 Meyerhof, G.G. (1951), "The ultimate bearing capacity of foundations", Geotechnique, 2(4), 301-332. https://doi.org/10.1680/geot.1951.2.4.301   DOI
4 Meyerhof, G.G. (1974), "Ultimate bearing capacity of footings on sand layer overlying clay", Can. Geotech. J., 11(2), 223-229. https://doi.org/10.1139/t74-018.   DOI
5 Serrano, A. and Olalla, C. (1994), "Ultimate bearing capacity of rock masses", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(2), 93-106. https://doi.org/10.1016/0148-9062(94)92799-5.   DOI
6 Serrano, A., Olalla, C. and Gonzalez, J. (2000), "Ultimate bearing capacity of rock masses based on the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 37(6), 1013-1018. https://doi.org/10.1016/S1365-1609(00)00028-9.   DOI
7 Shahin, M.A. and Cheung, E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. https://doi.org/10.12989/gae.2011.3.2.153.   DOI
8 Shoaei, M.D., Alkarni, A., Noorzaei, J., Jaafar, M.S., Bujang, B. and Huat, K. (2012), "Review of available approaches for ultimate bearing capacity of two-layered soils", J. Civ. Eng. Manage., 18(4), 469-482. https://doi.org/10.3846/13923730.2012.699930.   DOI
9 Sloan SW. (1988), "Lower bound limit analysis using finite elements and linear programming", Int. J. Numer. Anal. Meth. Geomech., 12(1), 61-77. https://doi.org/10.1002/nag.1610120105.   DOI
10 Sloan, S.W. and Kleeman, P.W. (1995), "Upper bound limit analysis using discontinuous velocity fields", Comput. Meth. Appl. Mech. Eng., 127(1-4), 293-314. https://doi.org/10.1016/0045-7825(95)00868-1.   DOI
11 Sokolovskii, VV. (1965), Statics of Soil Media, Butterworths Science, London, U.K.
12 Santa, C., Gonçalves, L. and Chamine, H.I. (2019), "A comparative study of GSI chart versions in a heterogeneous rock mass media (Marão tunnel, north Portugal): A reliable index in geotechnical surveys and rock engineering design", Bull. Eng. Geol. Environ., 78(8), 5889-5903. https://doi.org/10.1007/s10064-019-01481-7.   DOI
13 Misir, G. and Laman, M. (2016), "A modern approach to estimate the bearing capacity of layered soil", Period. Polytech. Civ. Eng., 61(3), 434-446. https://doi.org/10.3311/ppci.9578.
14 Okamura, M., Takemura, J. and Kimura, T. (1998), "Bearing capacity predictions of sand overlying clay based on limit equilibrium methods", Soils Found., 38(1), 181-194. https://doi.org/10.3208/sandf.38.181.   DOI
15 Ozbek, A. and Gul, M. (2014), "The geotechnical evaluation of sandstone-claystone alternations based on geological strength index", Arab. J. Geosci., 8(7), 5257-5268. https://doi.org/10.1007/s12517-014-1541-5   DOI
16 Satyanarayana, B. and Garg, R.K. (1981), "Bearing capacity of footings on layered C-PHI soils", Technical note, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18(1), 14. https://doi.org/10.1016/0148-9062(81)90444-7.   DOI
17 Zhu, M. (2004), "Bearing capacity of strip footings on two-layer clay soil by finite element method", Proceedings of the 2004 ABAQUS Users' Conference, Boston, Massachusetts, U.S.A., May.
18 Tajeri, S., Sadrossadat, E. and Bazaz, J.B. (2015), "Indirect estimation of the ultimate bearing capacity of shallow foundations resting on rock masses", Int. J. Rock Mech. Min. Sci., 80, 107-117. https://doi.org/10.1016/j.ijrmms.2015.09.015.   DOI
19 Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley, New York, U.S.A.
20 Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287.   DOI
21 Carter, J.P. and Kulhawy, F.H. (1988), "Analysis and design of foundations socketed into rock", Report No. EL-5918, Empire State Electric Engineering Research Corporation and Electric Power Research Institute, New York, U.S.A.
22 Alavi, A.H. and Sadrossadat, E. (2016), "New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses", Geosci. Front., 7(1), 91-99, https://doi.org/10.1016/j.gsf.2014.12.005.   DOI
23 Andrawes, K.Z., Al-Omari, R.R. and Kirkpatrick, W.M. (1996), "Bearing capacity of a strip foundation on a sand layer overlying a smooth rigid stratum", Geotech. Geol. Eng., 14(3), 227-236. https://doi.org/10.1007/BF00452949.   DOI
24 Budetta, P. and Napp,i M. (2011), "Heterogeneous rock mass classification by means of the geological strength index: The San Mauro formation (Cilento, Italy)", Bull. Eng. Geol. Environ., 70(4), 585-593. https://doi.org/10.1007/s10064-011-0351-1.   DOI
25 Farah, C.A. (2004), "Ultimate bearing capacity of shallow foundations on layered soils", M.Sc Thesis, Concordia University, Montreal, Quebec, Canada
26 Griffiths, D.V. (1982), "Computation of bearing capacity factors using finite elements", Geotechnique, 32(3), 195-202. https://doi.org/10.1680/geot.1982.32.3.195.   DOI
27 Hanna, A.M. (1981), "Experimental study on footings in layered soil", J. Geotech. Eng. Div., 107(8), 1113-1127.   DOI
28 Hanna, A.M. and Meyerhof, G.G. (1980), "Design charts for ultimate bearing capacity of foundations on sand overlying soft clay", Can. Geotech. J., 17(2), 300-303. https://doi.org/10.1139/t80-030.   DOI
29 Hanna, A.M. (1982), "Bearing capacity of foundations on a weak sand layer overlaying a strong deposit", Can. Geotech. J., 19(3), 392-396. https://doi.org/10.1139/t82-043.   DOI
30 Hanna, A.M. (1987), "Finite element analysis of footings on layered soils", Math. Modell., 9(11), 813-819. https://doi.org/10.1016/0270-0255(87)90501-X.   DOI
31 Kiru, R. and Madhav, M. (2010), "Response of rigid footing on reinforced granular fill over soft soil", Geomech. Eng., 2(4), 281-302. https://doi.org/10.12989/gae.2010.2.4.281.   DOI
32 Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Eng. Div., 106(9), 1013-1035.   DOI
33 Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.   DOI
34 Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion - 2002 Edition", Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference, Toronto, Ontario, Canada, July.
35 Kuo, Y.L., Jaksa, M.B., Lyamin, A.V. and Kaggwa, W.S. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil", Comput. Geotech., 36(3), 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002.   DOI
36 Marinos, P., Hoek, E. and Marinos, V. (2006), "Variability of the engineering properties of rock masses quantified by the geological strength index: The case of ophiolites with special emphasis on tunneling", Bull. Eng. Geol. Environ., 65(2), 129-142. https://doi.org/10.1007/s10064-005-0018-x.   DOI
37 Lyamin, A.V. and Sloan, S.W. (2002), "Lower bound limit analysis using non-linear programming", Int. J. Numer. Meth. Eng., 55(5), 573-611. https://doi.org/10.1002/nme.511.   DOI
38 Lyamin, A.V. and Sloan, S.W. (2002), "Upper bound limit analysis using linear finite elements and non-linear programming", Int J Numer. Anal. Meth. Geomech., 26(2), 181-216. https://doi.org/10.1002/nag.198.   DOI
39 Marinos, P. and Hoek, E. (2001), "Estimating the geotechnical properties of heterogenous rock masses such as flysch", Bull. Eng. Geol. Environ., 60(2), 85-92. https://doi.org/10.1007/s100640000090.   DOI