Browse > Article
http://dx.doi.org/10.12989/gae.2017.13.1.079

Application of a modified structural clay model considering anisotropy to embankment behavior  

Zhang, Hao (Department of Civil Engineering, Shanghai Jiao Tong University)
Chen, Qiushi (Glenn Department of Civil Engineering, Clemson University)
Chen, Jinjian (Department of Civil Engineering, Shanghai Jiao Tong University)
Wang, Jianhua (Department of Civil Engineering, Shanghai Jiao Tong University)
Publication Information
Geomechanics and Engineering / v.13, no.1, 2017 , pp. 79-97 More about this Journal
Abstract
Natural clays exhibit features such as structural and anisotropy. In this work, a constitutive model that is able to replicate these two salient features of natural clays is presented. The proposed model is based on the classical S-CLAY1 model, where the anisotropy of the soil is captured through the initial inclination and rotation of the yield surface. To account for the structural of the soil, the compression curve of the reconstituted soil is taken as the reference. All parameters of the proposed constitutive model have clear physical meanings and can be conveniently determined from conventional triaxial tests. This proposed model has been used to simulate the behavior of soft soil in the undrained triaxial tests and the performance of Murro embankment in terms of settlement and horizontal displacements during embankment construction and consolidation stage. Results of numerical simulations using proposed model have been compared with the field measurement data. The comparisons show that the two features significantly influence the prediction results.
Keywords
constitutive model; structural; anisotropy; soft clay; embankment;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Karim, M.R., Manivannan, G., Gnanendran, C.T. and Lo, S.C.R. (2011), "Predicting the long-term performance of a geogrid-reinforced embankment on soft soil using two-dimensional finite element analysis", Can. Geotech. J., 48(5), 741-753.   DOI
2 Karstunen, M. and Yin, Z.Y. (2010), "Modelling time-dependent behavior of Murro test embankment", Geotechnique, 60(10), 735-749.   DOI
3 Karstunen, M., Krenn, H., Wheeler, S.J., Koskinen, M. and Zentar, R. (2005), "Effect of anisotropy and destructuration on the behavior of Murro test embankment", Int. J. Geomech., 5(2), 87-97.   DOI
4 Karstunen, M., Wiltafsky, C., Krenn, H., Scharinger, F. and Schweiger, H.F. (2006), "Modelling the behaviour of an embankment on soft clay with different constitutive models", Int. J. Numer. Anal. Method. Geomech., 30(10), 953-982.   DOI
5 Kavvadas, M. and Amorosi, A. (2000), "A constitutive model for structured soils", Geotechnique, 50(3), 263-273.   DOI
6 Kimoto, S. and Oka, F. (2005), "An elasto-viscoplastic model for clay considering destructuralization and consolidation analysis of unstable behavior", Soils Found., 45(2), 29-42.   DOI
7 Koskinen, M., Karstunen, M. and Wheeler, S.J. (2002), "Modelling destructuration and anisotropy of a natural soft clay", Proceeding of the 5th European Conference on Numerical Methods in Geotechnical Engineering, Paris, France, September, pp. 11-20.
8 Leroueil, S. and Vaughan, P.R. (1990), "The general and congruent effects of structure in natural soils and week rock", Geotechnique, 40(3), 467-488.   DOI
9 Leroueil, S., Tavenas, F. and Brucy, F. (1979), "Behavior of destructured natural clays", J. Geotech. Eng. Div., 105(6), 759-778.
10 Liu, M.D. and Carter, J.P. (2000), "Modeling the destructuring of soils during virgin compression", Geotechnique, 50(4), 479-483.   DOI
11 Nakano, M., Nakai, K., Noda, T. and Asaoka, A. (2005), "Simulation of shear and one-dimensional compression behavior of naturally deposited clays by super/subloading yield surface Cam-clay model", Soils Found., 45(1), 141-151.
12 Locat, J. and Lefebvre, G. (1985), "The compressibility and sensitivity of an artificially sedimented clay soil: the Grande-Baleine marine clay", Marine Georesour. Geotech., 6(1), 1-27.   DOI
13 Marcin, C. and Pieter, A.V. (2004), "On the modelling of anisotropy and destructuration of soft clays within the multi-laminate framework", Comput. Geotech., 31(1), 1-22.   DOI
14 Mestat, P.H. (2001), "MOMIS: une base de donnees sur la modelisation numerique des remblais sur sols compressibles et sur la confrontation calculs-mesures in situ", Bulletin des Laboratories des Ponts et Chaussees, 232, 43-58.
15 Ng, C.W.W., Li, Q. and Liu, G.B. (2011), "Characteristics of one-dimensional compressibility of Shanghai clay", Chinese J. Geotech. Eng., 33(4), 630-636. [In Chinese]
16 Paulo, J., Venda, O. and Luis, J.L. (2011), "Numerical predictions of the behaviour of soft clay with two anisotropic elastoplastic models", Comput. Geotech., 38(5), 598-611.   DOI
17 Sheng, D., Sloan, S.W. and Yu, H.S. (2000), "Aspects of finite element implementation of critical state models", Computat. Mech., 26(2), 185-196.   DOI
18 Pietruszczak, S. and Pande, G.N. (2001), "Description of soil anisotropy based on multi‐laminate framework", Int. J. Numer. Anal. Methods Geomech., 25(2), 197-206.   DOI
19 Saiichi, S. and Takeshi, K. (1996), "Simplified deformation analysis for embankment foundation using elasto-plastic model", Soils Found., 36(2), 1-11.   DOI
20 Liu, M.D. and Carter, J.P. (2002), "A structured cam clay model", Can. Geotech. J., 39(6), 1313-1332.   DOI
21 Yin, J. (2012), "Effect of soil structure on compression behavior of natural soft clays", Chinese J. Rock Soil Mech., 33(1), 48-52. [In Chinese]
22 Vincenzo, S. and Ghassan, A.S. (2009), "Analytical solution of stress-strain relationship of modified Cam clay in undrained shear", Geomech. Eng., Int. J., 1(4), 263-274.   DOI
23 Wheeler, S.J., Naatanen, A., Karstunen, M. and Lojander, M. (2003), "An anisotropic elastoplastic model for soft clay", Can. Geotech. J., 40(2), 403-418.   DOI
24 Whittle, A.J. and Kavvadas, M.J. (1994), "Formulation of MIT-E3 constitutive model for overconsolidated clays", J. Geotech. Eng., 120(1), 173-198   DOI
25 Yin, Z.Y., Chang, C.S., Karstunen, M.H. and Hicher, P.V. (2010), "An anisotropic elastic-viscoplastic model for soft clays", Int. J. Solids Struct., 47(5), 665-677.   DOI
26 Abdulazim, Y. (2009), Numerical analyses of embankments on PVD improved soft clays. Advances in Engineering Software, 4, 1047-1055.
27 Zdravkovic, L., Potts, D.M. and Hight, D.W. (2002), "The effect of strength anisotropy on the behavior of embankments on soft clay", Geotechnique, 52(6), 447-457.   DOI
28 Zhu, G.F. and Yin, J.H. (2000), "Elastic visco‐plastic consolidation modelling of clay foundation at Berthierville test embankment", Int. J. Numer. Anal. Method. Geomech., 24(5), 491-508.   DOI
29 Burland, J.B., Rampello, S., Georgiannou, V.N. and Calabresi, G. (1996), "A laboratory study of the strength of four stiff clays", Geotechnique, 46(3), 491-514.   DOI
30 Abdulazim, Y., Minna, K. and Harald, K. (2008), "Effect of anisotropy and destructuration on behavior of Haarajoki test embankment", Int. J. Geomech., 9(4), 153-168.   DOI
31 Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378.   DOI
32 Chai, J.C., Miura, N. and Zhu, H.H. (2004), "Compression and consolidation characteristics of structured natural clays", Can. Geotech. J., 41(6), 1250-1258.   DOI
33 Chen, B., Xu, Q. and Sun, D.A. (2014), "An elastoplastic model for structured clays", Geomech. Eng., Int. J., 7(2), 213-231.   DOI
34 Cheng, X.L. and Wang, J.H. (2016), "An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays", Geomech. Eng., Int. J., 11(3), 325-343.   DOI
35 Dafalias, Y.F. (1987), "Anisotropic critical state clay plasticity model", Proceedings of the 2nd International Conference on Constitutive Laws for Engineering Materials, Volume 1, Tucson, AZ, USA, pp. 513-521.
36 Cotecchia, F. and Chandler, R.J. (2000), "A general framework for the mechanical behavior of clays", Geotechnique, 50(4), 431-447.   DOI
37 Curtis, K., Jitendra, S., David, H. and James, G. (2009), "Finite element analysis of an embankment on a soft estuarine deposit using elastic-viscoplastic soil model", Can. Geotech. J., 46(3), 357-368.   DOI
38 Dafalias, Y.F. (1986), "Bounding surface plasticity: Mathematical foundation and hypoplasticity", J. Eng. Mech., 112(9), 966-987.   DOI
39 Gajo, A. and Wood, D.M. (2001), "A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour", Int. J. Numer. Anal. Method. Geomech., 25(3), 207-241.   DOI
40 Gens, A. and Nova, R. (1993), "Conceptual bases for a constitutive model for bonded soils and weak rocks", Proceedings of International Symposium on Hard Soils - Soft Rocks, Athens, Greece, September, pp. 485-494.
41 Huang, M.S., Liu, Y.H. and Sheng, D.C. (2011), "Simulation of yielding and stress-strain behavior of Shanghai soft clay", Comput. Geotech., 38(3), 341-353.   DOI
42 Jirayut, S., Suksun, H. and Martin, D.L. (2010), "Modified structured cam clay: A generalised critical state model for destructured, naturally structured and artificially structured clays", Comput. Geotech., 37(7), 956-968.   DOI
43 John, P., Carter, J.P. and Martin, D. (2005), "Review of the structured cam clay model", In: Soil Constitutive Models: Evaluation, Selection, and Calibration, 128, 99-132.