Browse > Article
http://dx.doi.org/10.12652/Ksce.2019.39.6.0801

A Study on the Lunar Ground Temperature Profile for Investigation of Possible Condition of the Ice Layer Existence in Sub-surface of the Moon  

Go, Gyu-Hyun (Kumoh National Institute of Technology)
Lee, Jangguen (Korea Institute of Civil Engineering and Building Technology)
Shin, Hyu-Soung (Korea Institute of Civil Engineering and Building Technology)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.39, no.6, 2019 , pp. 801-809 More about this Journal
Abstract
NASA's lunar polar exploration mission in 2009 confirmed the presence of ice-layer in the permanently shadowed regions (PSR) of the moon. Since then, studies have been actively conducted to evaluate the ground characteristics for exploring the ice-layer in the polar regions of the Moon. In this study, transient heat transfer analysis for the lunar ground was conducted to predict the ground's temperature that varies with the time and location. As a result of the numerical analysis, it was confirmed that the temperature under the lunar ground converged to below the ice sublimation reference temperature (≒112 K) at above 86° latitude. This model enabled us to identify the regions where there is a high possibility of ice being buried. Besides, we found that the ice-layer in the shallow region, where the temperature deviation is significant, makes ground temperature distribution heterogeneous. Lastly, this study suggested the maximum allowable frictional heat of a drill bit that can preserve the phase of buried ice.
Keywords
Lunar pole exploration; Permanently shadowed regions; Heat transfer analysis; Ice-layers; Ground temperature profile;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hemingway, B. S., Krupka, K. M. and Robie, R. A. (1981). "Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = analbite." American Mineralogist, Vol. 66, pp. 1202-1215.
2 Hermalyn, B., Schultz, P. H., Shirley, M., Ennico, K. and Colaprete, A. (2012). "Scouring the surface: Ejecta dynamics and the LCROSS impact event." Icarus, Vol. 218, No. 1, pp. 654-665.   DOI
3 Hong, S. and Shin, H. (2018). "Trend analysis of lunar exploration missions for lunar base construction." J. Kor. Academia-Indust. cooper. Soci., Vol. 19, No. 7, pp. 144-152.   DOI
4 Ju, G. (2016). "Development status of domestic & overseas space exploration & associated technology." J. the Kor Soc. for aeronautical & space sci., Vol. 44, No. 8, pp. 741-757.   DOI
5 Keihm, S. J. (1984). "Interpretation of the lunar microwave brightness temperature spectrum: Feasibility of orbital heat flow mapping." Icarus, Vol. 60, No. 3, pp. 568-589.   DOI
6 Kopp, G. and Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance." Geophy. Res. Letters, Vol. 38, No. 1, p. L01706.   DOI
7 Lang, K. (2012). Astrophysical data: Planets and stars. Springer, New York.
8 Langseth, M. G., Keihm, S. J. and Peters, K. (1976). "Revised lunar heat-flow values, Lunar and Planet." Sci. Conf. Proc., Vol. 7, pp. 3143-3171.
9 Ledlow, M. J., Zeilik, M., Burns, J. O., Gisler, G. R., Zhao, J. H. and Baker, D. N. (1992). "Subsurface emissions from Mercury-VLA radio observations at 2 and 6 centimeters." The Astrophy. J., Vol. 384, pp. 640-655.   DOI
10 Lee, J., Ryu, B. H. and Lee, H. C. (2018) "Experimental assessment of frozen regolith shear strength using a newly developed drilling equipment" Proc. of KSCE 2018 Convention, KSCE, Korea.
11 Mitchell, D. L. and De Pater, I. (1994). "Microwave imaging of Mercury's thermal emission at wavelengths from 0.3 to 20.5 cm." Icarus, Vol. 110, No. 1, pp. 2-32.   DOI
12 Logan, L. M., Hunt, G. R., Balsamo, S. R. and Salisbury, J. W. (1972). "Midinfrared emission spectra of Apollo 14 and 15 soils and remote compositional mapping of the moon." Lunar and Planet. Sci. Conf., Vol. 3, pp. 3069-3076.
13 McKay, D. S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B. M. and Papike, J. (1991). The lunar regolith. In Lunar sourcebook, Cambridge University Press, New York, pp. 285-356.
14 Melosh, H. J. (1989). Impact cratering: A geologic process, Oxford University Press, New York, p. 245.
15 Spencer, J. R. (1990). "A Rough-Surface Thermophysical Model for Airless Planets." Icarus, Vol. 83, No. 1, pp. 27-38.   DOI
16 Vasavada, A. R., Bandfield, J. L., Greenhagen, B. T., Hayne, P. O., Siegler, M. A., Williams, J. P. and Paige, D. A. (2012). "Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment." J. Geophy. Res., Vol. 117, No. E12, p. E00H18.
17 Vasavada, A. R., Paige, D. A. and Wood, S. E. (1999). "Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits." Icarus, Vol. 141, No. 2, pp. 179-193.   DOI
18 Whipple, F. L. (1950). "A comet model. I. The acceleration of comet Encke." The Astrophy. J., Vol. 111, pp. 375-394.   DOI
19 Williams, J. P., Paige, D. A., Greenhagen, B. T. and Sefton-Nash, E. (2017). "The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment." Icarus, Vol. 283, pp. 300-325.   DOI
20 Bandfield, J. L., Hayne, P. O., Williams, J. P., Greenhagen, B. T. and Paige, D. A. (2015). "Lunar surface roughness derived from LRO Diviner radiometer observations." Icarus, Vol. 248, pp. 357-372.   DOI
21 Carrier, W. D., Olhoeft, G. R. and Mendell, W. (1991). Physical properties of the lunar surface. In Lunar Sourcebook, New York: Cambridge University Press. pp. 475-594.
22 Fa, W. and Wieczorek, M. A. (2012)."Regolith thickness over the lunar nearside: Results from Earth-based 70-cm Arecibo radar observations." Icarus, Vol. 218, No. 2, pp. 771-787.   DOI
23 Hayne, P. O., Bandfield, J. L., Siegler, M. A., Vasavada, A .R., Ghent, R. R., Williams, J. P., Greenhagen, B. T., Aharonson, O., Elder, C. M., Lucey, P. G. and Paige, D. A. (2017). "Global regolith thermophysical properties of the moon from the diviner lunar radiometer experiment." J. Geophy. Res. Planets, Vol. 122, No. 12, pp. 2371-2400.   DOI
24 Hayne, P., Bandfield, J., Vasavada, A., Ghent, R., Siegler, M., Williams, J. P., Greenhagen, B., Aharonson, O. and Paige, D. (2013). "Thermophysical properties of the lunar surface from Diviner observations." In EGU Gen. Assembly, Vol. 15, pp. 10871.