Browse > Article
http://dx.doi.org/10.12652/Ksce.2018.38.6.0867

Simulation-Based Analysis on Dynamic Merge Control at Freeway Work Zones in Automated Vehicle Environment  

Kim, Sunho (Seoul National University)
Lee, Jaehyeon (Seoul National University)
Kim, Yongju (Seoul National University)
Lee, Chungwon (Seoul National University)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.38, no.6, 2018 , pp. 867-878 More about this Journal
Abstract
As the era of AVs (Automated Vehicles) comes to a close, many researches related to AVs have been conducted. Up until now, research on traffic flow impact of AVs has been the main topic, and research on traffic management for AVs is still in beginning stage. This study analyzed the effect of Dynamic Merge Control (DMC) in manual vehicle (MV) and AV environment at work zone. Dynamic Late Merge (DLM) and DLM with Dynamic Early Merge (DEM) are compared by simulation. Simulation results showed that DLM improves travel time and work zone throughput compared to no merge control case in both MV and AV environment. In the case of additional operation of DEM, the improvement effect was not observed in MV environment, but it was improved in AV environment. As a result, DMC operation in AV environment was as effective as the improvement in transition from MV to AV environment. Therefore congestion reduction at freeway work zone by DMC will be possible in future AV environment, and the improvement of DMC can be suggested.
Keywords
Automated vehicle; Work zone; Traffic management; Dynamic merge control; Microscopic traffic simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Radwan, E., Harb, R. and Ramasamy, S. (2009). Evaluation of Safety and Operational Effectiveness of Dynamic Lane Merge System in Florida, Report of Florida Department of Transportation, Center for Advanced Transportation Systems Simulation, University of Central Florida, Orlando, Florida.
2 Shladover, S. E. (2017). "Connected and automated vehicle systems: introduction and overview." Journal of Intelligent Transportation Systems, Vol. 22, No. 3, pp. 190-200.   DOI
3 Subhanka, N. (2018). Impact of Level 3 Automated Vehicle Merging on 2-To-1 Lane Freeway, Master Thesis, University of Wisconsin-Madison, Madison, Wisconsin, USA.
4 Sun, R., Hu, J., Xie, X. and Zhang, Z. (2014). "Variable speed limit design to relieve traffic congestion based on cooperative vehicle infrastructure system." Procedia-Social and Behavioral Sciences, Vol. 138, pp. 427-438.   DOI
5 Taavola, D., Jackels, J. and Swenson, T. (2003). "Dynamic late merge system evaluation: initial deployment on US route 10 summer 2003." Transportation Research Record: Journal of the Transportation Research Board, No. 976036.
6 Talebpour, A. and Mahmassani, H. S. (2016). "Influence of connected and autonomous vehicles on traffic flow stability and throughput." Transportation Research Part C: Emerging Technologies, Vol. 71, pp. 143-163.   DOI
7 Talebpour, A., Mahmassani, H. S. and Elfar, A. (2017). "Investigating the effects of reserved lanes for autonomous vehicles on congestion and travel time reliability." Transportation Research Record: Journal of the Transportation Research Board, Vol. 2622, pp. 1-12.   DOI
8 Talebpour, A., Mahmassani, H. S. and Hamdar, S. H. (2013). "Speed harmonization evaluation of effectiveness under congested conditions." Transportation Research Record: Journal of the Transportation Research Board, Vol. 2391, No. 1, pp. 69-79.   DOI
9 Yang, N., Chang, G. L. and Kang, K. P. (2009). "Simulation-based study on a lane-based signal system for merge control at freeway work zones." Journal of Transportation Engineering, ASCE, Vol. 135, No. 1, pp. 9-17.   DOI
10 Ullman, G., Schroeder, J. and Gopalakrishna, D. (2014). Use of Technology and Data for Effective WorkZone Management: WorkZone ITS Implement Guide, Report of Federal Highway Administration, Battelle, Columbus, Ohio, Texas A&M Transportation Institute, The Texas A&M University System, College Station, Texas
11 Mahmassani, H. S. (2016). "50th anniversary invited article-autonomous vehicles and connected vehicle systems: flow and operations considerations." Transportation Science, Vol. 50, No. 4, pp. 1140-1162.   DOI
12 ATKINS (2016). Research on the Impacts of Connected and Autonomous Vehicles(CAVs) on Traffic Flow, Report of Department for Transport, United Kingdom.
13 Ge, Q. and Menendez, M. (2013). "A simulation study for the static early merge and late merge controls at freeway work zones." Swiss Transport Research Conference, Monte Verita/Ascona, Switzerland.
14 Ghiasi, A., Ma, J., Zhou, F. and Li, X. (2017). "Speed harmonization algorithm using connected autonomous vehicles." Transportation Research Record: Journal of the Transportation Research Board, No. 2565.
15 Grumert, E., Ma, X. and Tapani, A. (2015). "Analysis of a cooperative variable speed limit system using microscopic traffic simulation." Transportation Research Part C: Emerging Technologies, Vol. 52, pp. 173-186.   DOI
16 Han, Y., Chen, D. and Ahn, S. (2017). "Variable speed limit control at fixed freeway bottlenecks using connected vehicles." Transportation Research Part B: Methodological, Vol. 98, pp. 113-134.   DOI
17 Kang, K. P., Chang, G. L. and Paracha, J. (2006). "Dynamic late merge control at highway work zones: evaluation, observations, and suggestions." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1948, pp. 86-95.   DOI
18 Khondaker, B. and Kattan, L. (2015). "Variable speed limit: A microscopic analysis in a connected vehicle environment." Transportation Research Part C: Emerging Technologies, Vol. 58, pp. 146-159.   DOI
19 Mccoy, P. and Pesti, G. (2001). "Dynamic late merge control concept for work zones on rural interstate highways." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1745, pp. 20-26.   DOI
20 Meyer, E. (2004). Construction Area Late Merge (CALM) System, Report of Kansas Department of Transportation, Meyer ITS, Lawrence, Kansas.
21 Mirshahi, M., Obenberger, J., Fuhs, C. A., Howard, C. E., Krammes, R. A., Kuhn, B. T., Mayhew, R. M., Moore, M. A., Sahebjam, K., Stone, C. J. and Yung, J. L. (2007). Active Traffic Management: The Next Step in Congestion Management, Report of Federal Highway Administration, American Trade Initiatives, Alexandria, Vinrginia.
22 Qom, S. F., Xiao, Y. and Hadi, M. (2016). "Evaluation of cooperative adaptive cruise control (CACC) vehicles on managed lanes utilizing macroscopic and mesoscopic simulation." Transportation Research Record: Journal of the Transportation Research Board, No. 2565.