Browse > Article
http://dx.doi.org/10.12652/Ksce.2012.32.5B.287

Representation of Runoff Area by means of DEM  

Kim, Joo Cheol (충남대학교 국제수자원연구소)
Yoon, Yeo Jin (건양대학교 건설환경공학과)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.32, no.5B, 2012 , pp. 287-293 More about this Journal
Abstract
This study suggests the topographic index-based methodology which can be used to represent the saturation of soil and thereby change of variable runoff area at basin scale. ${\infty}$-flow direction method is applied to estimate topographic index because of its freedom from the restriction of 8-flow direction method as well as possibility of the minimum flow dispersion. From the comparison of topographic index distribution with the existing result the methodology is shown to be a workable one. It is judged that the representation of variable runoff area may be a systematic tool to investigate the dynamic and non-linear property of rainfall-runoff process because it can provide the explicit way to spatial distribution of basin saturation.
Keywords
runoff area; saturation; topographic index; ${\infty}$-flow direction method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 김상현, 이지영(1999) 개선된 지형지수 산정 알고리즘에 관한 연구, 한국수자원학회 논문집, 한국수자원학회, 32(4), 489-499.
2 김상현, 김경현, 정선희(2001) 수치 고도 분석:분포형 흐름 분배 알고리즘, 한국수자원학회 논문집, 한국수자원학회, 34(3), 241-251.   과학기술학회마을
3 이지영, 김상현(2000) 지형적 특성을 고려한 지형지수 산정 알고리즘에 관한 연구, 한국수자원학회 논문집, 한국수자원학회, 33(3), 279-288.   과학기술학회마을
4 조홍제, 조인률, 김정식(1997) TOPMODEL을 이용한 강우-유출 해석에 관한 연구, 한국수자원학회 논문집, 한국수자원학회, 30(5), 515-526.
5 Beven, K. and Kirkby, M.J. (1979) A physically based variable contributing area model of basin hydrology, Hydrological Science Journal, 24(1), 43-69.   DOI   ScienceOn
6 D'Odorico, P. and Rigon, R. (2003) Hillslope and channel contributions to the hydrologic response, Water Resources Research, 39(5), SWC1-1-SWC1-9.
7 Dooge, J.C.I. (1973) Linear theory of hydrologic systems, Technical Bulletin, 1468, Agricultural Research Service, United States Department of Agriculture, Washington, D.C.
8 Franchini, M., Wendling, J., Obled, C., and Todini, E. (1996) Physical interpretation and sensitivity analysis of the TOPMODEL, Journal of Hydrology, 175, 293-338.   DOI
9 Gregory, E.T., Catani, F., Rinaldo, A., and Bras, R.L. (2001) Statistical analysis of drainage density from digital terrain data, Geomorphology, 36, 187-202.   DOI
10 O'Callaghan, J.F. and Mark, D.M. (1984), The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image Processing, 28, 324-344.
11 Pack, R.T., Tarboton, D.G., and Goodwin, C.N. (2001) Assessing Terrain Stability in a GIS using SINMAP, in 15th annual GIS conference, GIS 2001, Vancouver, British Columbia, February 19-22.
12 Pan, F., Peters-Lidard, C.D., Sale, M.J., and King, A.W. (2004) A comparison of geographical information systems-based algorithms for computing the TOPMODEL topographic index, Water Resources Research, 40, doi:10.1029/2004WR003069.   DOI
13 Quinn, P., Beven, K., Chevallier, P., and Planchon, O. (1991) The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models, Hydrological Processes, 5, 59-79.   DOI
14 Rodriguez-Iturbe, I., Vogel, G.K., Rigon, R., Entekhabi, D., Castelli, F., and Rinaldo, A. (1995) On the spatial organization of soil moisture fields, Geophysical Research Letters, 22(20), 2757-2760.   DOI   ScienceOn
15 Tarboton, D.G. (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33(2), 309-319.   DOI   ScienceOn
16 Tarboton, D.G. (2003) Terrain analysis using digital elevation models in hydrology, 23rd ESRI International Users Conference, San Diego, California.
17 Wolock, D.M. and McCabe, G.J. (1995) Comparison of single and multiple flow direction algorithms for computing topographic parameters, Water Resources Research, 31(5), 1317-1324.