Browse > Article
http://dx.doi.org/10.12652/Ksce.2011.31.3B.211

A Conceptual Soil Water Model of Catchment Water Balance: Which Hydrologic Components are Needed to Calibrate the Model?  

Choi, Daegyu (부경대학교 환경공학과)
Yang, Jeong-Seok (국민대학교 건설시스템공학부)
Chung, Gunhui (한국건설기술연구원 수자원연구실)
Kim, Sangdan (부경대학교 환경공학과)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.31, no.3B, 2011 , pp. 211-220 More about this Journal
Abstract
In this study a conceptual soil water model is proposed to simulate water balance at catchment scale. The model is based on the sequential separation of daily precipitation into surface runoff, wetting, vaporization, and percolation. The proposed model is calibrated by using three observation sets: empirically estimated annual vaporization, monthly wetting estimated by NRCS-CN method, and both of them. The model performance is evaluated to understand which hydrologic components for calibrating the model are needed. It is shown that both of annual vaporization and monthly wetting are indispensable hydrologic components to simulate reasonably precipitation partitioning.
Keywords
annual water balance; hydrologic component; precipitation partitioning; soil water;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Troch, P.A., Martinez1, G.F., Pauwels, V.R.N., Durcik, M., Sivapalan, M., Harman, C., Brooks, P.D., Gupta, H. and Huxman, T. (2009) Climate and vegetation water use efficiency at catchment scales. Hydrological Process, Vol. 23, pp. 2409-2414.   DOI   ScienceOn
2 Webb, W., Szarek, S., Lauenroth, W., Kinerson, R., and Smith, M. (1986) Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology, Vol. 59, pp. 1239-1247.
3 Yoo, C., Kim, S., and Kim, T.W. (2006) Assessment of drought vulnerability based on the soil moisture PDF. Stochastic Environmental Research and Risk Assessment, Vol. 21, pp. 131-141.   DOI   ScienceOn
4 Zhang, L., Hickel, K., Dawes, W.R., Chiew, F.H.S., Western, A.W. and Briggs, P.R. (2004) A rational function approach for estimating mean annual evapotranspiration. Water Resources Researches, Vol. 40, W02502, doi:10.1029/2003WR002710.
5 Zhang, L., Dawes, W.R. and Walker, G.R. (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, Vol. 37, pp. 701-708.   DOI   ScienceOn
6 한수희, 김상단(2008) 토양수분과 식생의 물 압박에 대한 생태수 문학적 해석: 추계학적 모형의 유도와 적용을 중심으로, 수질보전 한국물환경학회지, 한국물환경학회, 제24권, pp. 99-106.
7 Beven, K. (2006) Benchmark Papers in Storm Runoff Generation. IAHS Press, Wallingford, UK.
8 한수희, 김상단(2009) Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해, 수질보전 한국물환경학회지, 한국물환경학회, 제25권, pp. 112-119.
9 한수희, 안재현, 김상단(2009) 토양수분의 추계학적 거동과 기후 변화가 미치는 영향, 한국수자원학회논문집, 한국수자원학회, 제42권, pp. 433-443.
10 Allen, M.R. and Ingram, W.J. (2002) Constraints on future changes in climate and the hydrologic cycle. Nature, Vol. 419. pp. 224-232.   DOI   ScienceOn
11 Budyko, M.I. (1974) Climate and life. Academic, San Diego, California, USA.
12 Chow, V.T., Maidment, D.R., and Mays, L.W. (1988) Applied Hydrology. McGraw-Hill.
13 Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., and Lodge, D.M. (2001) Ecological forecasts: an emerging imperative. Science, Vol. 293, pp. 657-660.   DOI
14 Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R. and Mearns, L.O. (2000) Climate extremes: observations, modeling, and impacts. Science, Vol. 289, pp. 2068-2074.   DOI   ScienceOn
15 Fu, B.P. (1981) On the calculation of the evaporation from land surface. Sci. Atmos. Sin., Vol. 5, pp. 23-31.
16 Horton, R.E. (1933) The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union. Vol. 14, pp. 446-460.   DOI
17 Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., Smith, S.D., Tissue, D.T., Zak, J.C., Weltzin, J.F., Pockman, W.T., Sala, O.E., Haddad, B.M., Harte, J., Koch, G. W., Schwinning, S., Small, E.E., and Williams, D.G. (2004) Convergence across biomes to a common rain use efficiency. Nature, Vol. 429, pp. 651-654.   DOI   ScienceOn
18 Milly, P.C.D., Wetherald, R.T., Dunne, K.A., and Delworth, T.L. (2002) Increasing risk of great floods in a changing climate. Nature, Vol. 415, pp. 514-517.   DOI   ScienceOn
19 Kim, S., Han, S. and Kavvas, M.L. (2008) Analytical derivation of steady-state soil water probability density function coupled with simple stochastic point rainfall model, Journal of Hydrologic Engineering, Vol. 13, pp. 1069-1077.   DOI   ScienceOn
20 Kim, S., Han, S., and Kim, E. (2011) Stochastic modeling of soil water and plant water stress using cumulant expansion theory, Ecohydrology, 4, pp. 94-105.   DOI   ScienceOn
21 Noy Meir, I. (1973) Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, Vol. 4, pp. 25-44.   DOI   ScienceOn
22 Pike, J.G. (1964) The estimation of annual runoff from meteorlogoical data in a tropical climate. Journal of Hydrology, Vol. 2, pp. 116-123.   DOI   ScienceOn
23 Porporato, A. and Rodriguez-Iturbe, I. (2002) Ecohydrology: a challenging multidisciplinary research perspective. Hydrological Sciences Journal, Vol. 47, pp. 811-821.   DOI   ScienceOn
24 Potter, N.J., Zhang, L., Milly, P.C.D., McMahon, T.A., and Jakeman, A.J. (2005) Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australia catchments, Water Resource Researches, Vol. 41, W06007, doi:10./1029/2004WR003697.
25 Rodriguez-Iturbe, I. and Porporato, A. (2004) Ecohydrology of Water-Controlled Ecosystems. Cambridge University Press, New York.
26 Stephenson, N.L. (1990) Climatic control of vegetation distribution: the role of the water-balance. American Naturalist, Vol. 135, pp. 649-670.   DOI   ScienceOn