Browse > Article
http://dx.doi.org/10.7745/KJSSF.2015.48.3.180

Characterization of Li+-ion Exchanged Zeolite Y using Organic Solvents  

Kim, Hu Sik (Department of Applied Chemistry, Andong National University)
Lee, Seok Hee (Department of Science Education, Busan National University of Education)
Park, Kyun Hye (HanKuk Academy of Foreign Studies)
Park, Yong Hyun (HanKuk Academy of Foreign Studies)
Park, Jun Woo (HanKuk Academy of Foreign Studies)
Hwang, Ji Hyun (HanKuk Academy of Foreign Studies)
Park, Jong Sam (Department of Radiologic Technology, Daegu Health College)
Choi, Sik Young (Department of Applied Chemistry, Andong National University)
Lim, Woo Taik (Department of Applied Chemistry, Andong National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.48, no.3, 2015 , pp. 180-188 More about this Journal
Abstract
To investigate the tendency of $Li^+$ exchange from polar organic solvents, $Li^+$-ion exchange into zeolite Y (Si/Al = 1.56) was attempted by undried methanol (crystal 1) and formamide (crystal 2) solvent. Two single crystals of Na-Y were treated with 0.1 M LiNO3 in each of the two solvents at 323 K, followed by vacuum dehydration at 723 K. Their structures were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group $Fd{\bar{3}}m$, at 100(1) K. In both structures, $Li^+$ for $Na^+$ ions filled preferentially sites I' and II. The remaining $Na^+$ ions occupied sites I', II, and III' in both structures, in additional to above sites, and $Na^+$ ions occupied site I in crystal 2. While the 68 % exchange of $Li^+$ for $Na^+$ was achieved from undried methanol, only 40 % exchange was observed from undried formamide, indicating that the undried methanol was more effective than undried formamide as solvent for $Li^+$ exchange under the conditions employed.
Keywords
Lithium; Zeolite Y; Ion exchange; Methanol; Formamide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Arvai, A.J., and C. Nielsen. 1983. ADSC Quantum- 210 ADX Program, Area Detector System Corporation; Poway, CA, USA
2 Bae, D. and K. Self. 1999. Structures of cobalt(II)-exchanged zeolite X. Micropor. Mesopor. Mater. 33: 265-280.   DOI   ScienceOn
3 Bae, D. and K. Self. 2000. Extensive intrazeolitic hydrolysis of Zn(II): partials structures of partially and fully hydrated Zn(II)-exchanged zeolite X. Micropor. Mesopor. Mater. 40: 233-245.   DOI
4 Break, D.W. 1974. Zeolite Molecular Sieves, Wiley & Sons, New York. p 93.
5 Bruker-AXS (ver 6.12), XPREP. 2001. Program for the Automatic Space Group Determination, Bruker AXS Inc., Madison, Wisconsin, USA.
6 Canfield, G.M., M. Bizimis, and S.E. Latturner. 2007. Sodalite ion exchange in polyethyleneoxide oligomer solvents. J. Mater. Chem. 17: 4530-4534.   DOI
7 Canfield, G.M., M. Bizimis, and S.E. Latturner. 2010. Transition-Metal ion exchange using poly(ethylene glycol) oligomers as solvents. Chem. Mater. 22: 330- 337.   DOI
8 Cromer, D.T. 1965. Anomalous dispersion corrections computed from self-consistent field relativistic dirac-slater wave functions. Acta Crystallogr. 18: 17-23.   DOI
9 Doyle, P.A., and P.S. Turner. 1968. Relativistic hartree-fock X-ray and electron scattering factors. Acta Crystallogr. Sect. A. 24: 390-397.   DOI
10 Feuerstein, M., and R.F. Lobo. 1998. Characterization of Li cations in zeolite LiX by solid-satate NMR spectroscopy and neutron diffraction. Chem. Mater. 10: 2197-2204.   DOI   ScienceOn
11 Feuerstein, M., R.J. Accardi, and R.F. Lobo. 2000. Adsorption of nitrogen and oxygen in the zeolite LiA and LiX investigated by $^6Li$ and $^7Li$ MAS NMR spectroscopy. J. Phy. Chem. B. 104: 10282-10287.   DOI   ScienceOn
12 Forano, C., R.C.T. Slade, E. Krogh Andersen, I.G. Krogh Andersen, and E. Prince. 1989. Neutron diffraction determination of full structures of anhydrous Li-X and Li-Y zeolites. J. Solid State Chem. 82: 95-102.   DOI   ScienceOn
13 Ibers, J.A., and W.C. Hamilton. 1974a. International Tables for X-ray Crystallography, Vol. IV (Kynoch Press, Birmingham, England), pp. 71-98.
14 Freude, D., S. Beckert, F. Stallmach, R. Kurzhals, D. Taschner, H. Toufar, J. Karger, and J. Haase. 2013. Ion and water mobility in hydrated Li-LSX zeolite studied by $^1H$, $^6Li$ and $^7Li$ NMR spectroscopy and diffusometry. Micropor. Mesopor. Mater.172: 174-181.   DOI
15 Herden, H., W.D. Einicke, R. Scholler, W.J. Mortier, L.R. Gellens, and J.B. Uytterhoeven. 1982. Location of Li-ions in synthetic zeolites X and Y. Zeolite. 2: 131-134.   DOI   ScienceOn
16 Ho, K.H., H.S. Lee, B.C. Leano, T. Sun, and K. Seff. 1995. Failure of ion exchange into zeolites A and X from four diverse nonaqueous solvents. Zeolites. 15: 377-381.   DOI   ScienceOn
17 Ibers, J.A., and W.C. Hamilton. 1974b. International Tables for X-ray Crystallography, Vol. IV (Kynoch Press, Birmingham, England), pp. 148-150.
18 Kim, H.S., D. Bae, W.T. Lim, and K. Seff. 2012a. $Li^+$ exchange into zeolite Na-Y (FAU) from aqueous methanol. Single-crystal structures of fully dehydrated Li, Na-Y. J. Phy. Chem. C. 116: 9009-9018.   DOI   ScienceOn
19 Kim, H.S., S.O. Ko, and W.T. Lim. 2012b. Single-crystal structures of $Li^+$-exchanged zeolite X (FAU, Si/Al = 1.09) from aqueous solution depends on ion-exchange temperatures at 293 and 333 K. Bull. Korean Chem. Soc. 33: 3303-3310.   DOI   ScienceOn
20 Kim, H.S., S.Y. Choi, and W.T. Lim. 2013a. Complete $Li^+$ exchange into zeolite X (FAU, Si/Al =1.09) from undried methanol solution. J. Porous Mater. 20: 1449-1456.   DOI
21 Lide, D.R. 1996/1997b. Handbook of Chemistry and Physics, 77th ed., CRC Press: Boca Raton, FL, p. 6-152.
22 Kim, H.S., J.S. Park, J.J. Kim, J.M. Suh, and W.T. Lim. 2013b. $Li^+$-exchanged zeolites X and Y (FAU) from undried formamide solution. Korean J. Soil Sci. Fert. 46: 260-269.   DOI
23 Lee, Y.M., G.H. Jeong, Y. Kim, and K. Seff. 2005. Single crystal structure of fully dehydrated, excessively $Cd^{2+}$- exchanged zeolite Y, ${\mid}Cd_{27.5}(Cd_8O_4)_2{\mid}[Si_{121}Al_{71}O_{384}]$-FAU, containing $Cd_8O_4{^8+}$ clusters. Micropor. Mesopor. Mater. 88: 105-111.
24 Lide, D.R. 1996/1997a. Handbook of Chemistry and Physics, 77th ed., CRC Press: Boca Raton, FL, p. 12-14.
25 Lim, W.T., S.Y. Choi, J.H. Choi, Y.H. Kim, N.H. Heo, and K. Seff. 2006. Single-crystal structure of fully dehydrated fully $K^+$-exchanged zeolite Y (FAU), $K_{71}Si_{121}Al_{71}O_{384}$. Micropor. Mesopor. Mater. 92: 234-242.   DOI   ScienceOn
26 Lim, W.T., S.M. Seo, L.Z. Wang, G.Q. Lu, N.H. Heo, and K. Seff. 2010. Single-crystal structures of highly $NH_4{^+}$- exchanged, fully deaminated, and fully $Tl^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated. Micropor. Mesopor. Mater. 129: 11-21.   DOI
27 Loewenstein, W. 1954. The distribution of aluminum in the tetrahedral of silicates and aluminates. Am. Mineral. 39: 92-96.
28 Olson, D.H. 1995. The crystal structure of dehydrated NaX. Zeolites. 15: 439-443.   DOI
29 Otwinowski, Z., and W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.   DOI
30 Plevert, J., F. Di Renzo, F. Fajula, and G. Chiari. 1997. Structure of dehydrated zeolite Li-LSX by neutron diffraction: Evidence for a low-temperature orthorhombic faujasite. J. Phys. Chem. B. 101: 10340-10346.   DOI   ScienceOn
31 Ronay, C., and K. Seff. 1985. Crystal structure of lead ($Pb_6$)- A and lead hydroxide hydrate ($Pb_9(OH)_8(H_2O)_3$)-A. Zeolite A ion exchanged with lead(2+) at pH 4.3 and 6.0 and evacuated. J. Phys. Chem. 89: 1965-1970.   DOI
32 Ronay, C., and K. Self. 1993. Lead oxide hydroxide clusters in $Pb_9O(OH)_4-A$, zeolite A exchanged with $Pb^{2+}$ at Ph 6.0. Zeolites. 13: 97-101.   DOI
33 Seo, S.M., W.T. Lim, and K. Seff. 2012a. Crystallographic verification that Copper(II) coordinates to four of the oxygen atoms of zeolite 6-rings. Two single-crystal structures of fully dehydrated, largely $Cu^{2+}$-exchanged zeolite Y (FAU, Si/Al = 1.56). J. Phys. Chem. C. 116: 963-974.   DOI   ScienceOn
34 Seo, S.M., W.T. Lim, and K. Seff. 2012b. Single-crystal structures of fully and partially dehydrated zeolite Y (FAU, Si/Al = 1.56) $Ni^{2+}$ exchanged at a low pH, 4.9. J. Phys. Chem. C. 116: 13985-13996.   DOI
35 Sheldrick, G.M. 1997. SHELXL97, Program for the Refinement of Crystal Structures. University of Gottingen, Germany.
36 Shepelev, Y.F., A.A. Anderson, and Y.I. Smolin. 1990. Crystal structure of a partially lithium-exchanged X zeolite in hydrated ($25^{\circ}C$) and dehydrated ($275^{\circ}C$) states. Zeolites. 10: 61-63.   DOI
37 Van Bekkum, H., E.M. Flanigen, P.A. Jacobs, and J.C. Jansen. 2001. Introduction to Zeolites Science and Practice. Elsevier. p 44.
38 Zhu, J., N. Mosey, T. Woo, and Y. Huang. 2007. Study of the adsorption of toluene in zeolite LiNa-Y by Solid-State NMR spectroscopy. J. Phys. Chem. C. 111: 13427-13436.   DOI
39 Weast, R.V. 1989/1990. Handbook of Chemistry and Physics, 70th ed., The chemical Rubber Co.: Cleveland, OH, p. F-187.
40 Wozniak, A., B. Marler, K. Angermund, and H. Gies. 2008. Water and cation distribution in fully and partially hydrated Li-LSX zeolite. Chem. Mater. 20: 5968-5976.   DOI   ScienceOn
41 Zhu, L., and K. Seff. 1999. Reinvestigation of the crystal structure of dehydrated sodium zeolite X. J. Phys. Chem. B. 103: 9512-9518.