Browse > Article
http://dx.doi.org/10.7745/KJSSF.2013.46.4.260

Li+-exchanged Zeolites X and Y (FAU) from Undried Formamide Solution  

Kim, Hu Sik (Department of Applied Chemistry, Andong National University)
Park, Jong Sam (Department of Radiologic Technology, Daegu Health College)
Kim, Jeong Jin (Department of Earth & Environmental Sciences, Andong National University)
Suh, Jeong Min (Department of Bio-Environmental Energy, Pusan National University)
Lim, Woo Taik (Department of Applied Chemistry, Andong National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.46, no.4, 2013 , pp. 260-269 More about this Journal
Abstract
Two single-crystals of fully dehydrated, partially $Li^+$-exchanged zeolites X (Si/Al = 1.09, crystal 1) and Y (Si/Al = 1.56, crystal 2), were prepared by flow method using 0.1 M $LiNO_3$ at 393 K for 48 h, respectively, followed by vacuum dehydration at 673 K and $1{\times}10^{-6}$ Torr. Their structures were determined by single-crystal X-ray diffraction techniques in the cubic space group $Fd\bar{3}$ and $Fd\bar{3}m$ at 100(1) K for crystals 1 and 2, respectively. They were refined to the final error indices $R_1/wR_2$ = 0.065/0.211 and 0.043/0.169 for crystals 1 and 2, respectively. In crystal 1, about 53 $Li^+$ ions per unit cell are found at three distinct positions; 9 at site I', 19 at another site I', and the remaining 25 at site II. The residual 25 $Na^+$ ions occupy three equipoints; 2 are at site I, 7 at site II, and 16 at site III'. In crystal 2, about 31 $Li^+$ ions per unit cell occupy sites I' and II with occupancies at 22 and 9, respectively; 3, 4, 23, and 3 $Na^+$ ions are found at sites I, I', II, and III', respectively. The extent of $Li^+$ ion exchange into zeolite X (crystal 1) is higher than that of zeolite Y (crystal 2), ca. 73% and 56% in crystals 1 and 2, respectively.
Keywords
Lithium; Zeolite; Structure; Ion exchange; Formamide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cromer, D.T. 1965. Anomalous dispersion corrections computed from self-consistent field relativistic dirac-slater wave functions. Acta Crystallogr. 18; 17-23.   DOI
2 Bogomolov, V.N. and V. P. Petranovskii. 1986. Growth of NaX zeolite monocrystals up to 0.5 mm. Zeolites. 6: 418-419.   DOI   ScienceOn
3 Breck, D.W. 1974. Zeolite molecular sieves. John Wiley & Sons, New York. p. 93.
4 Bruker-AXS (ver. 6.12), XPREP. 2001. Program for the automatic space group determination. Bruker AXS Inc., Madison, Wisconsin, USA.
5 Forano, C., R.C.T. Slade, E. Krogh Andersen., I.G. Krogh Andersen., and E. Prince. 1989. Neutron diffraction determination of full structures of anhydrous Li-X and Li-Y zeolites. J. Solid State Chem. 82: 95-102.   DOI   ScienceOn
6 Doyle, P.A. and P.S. Turner. 1968. Relativistic hartree-fock X-ray and electron scattering factors. Acta Crystallogr., Sect. A 24: 390-397   DOI
7 Feuerstein, M. and R.F. Lobo. 1998. Characterization of Li cations in zeolite LiX by solid-satate NMR spectroscopy and neutron diffraction. Chem. Mater. 10: 2197-2204.   DOI   ScienceOn
8 Feuerstein, M., R.J. Accardi, and R.F. Lobo. 2000. Adsorption of nitrogen and oxygen in the zeolite LiA and LiX investigated by $^6Li$ and $^7Li$ MAS NMRspectroscopy. J. Phys. Chem. B. 104: 10282-10287.   DOI   ScienceOn
9 Gaffney, T. R. 1996. Porous solids for air separation. Solid State. Mater. Sci. 1: 69-75.   DOI   ScienceOn
10 Herden, H., W.D. Einicke., and R. Schollner. 1982. Location of Li-ions in synthetic zeolites X and Y. Zeolites. 2: 131-134.   DOI   ScienceOn
11 Ho, K., H.S. Lee, B.C. Leano, T. Sun., and K. Seff. 1995. Failure of ion exchange into zeolites A and X from four diverse nonaqueous solvents. Zeolites. 15: 377-381.   DOI   ScienceOn
12 Ibers, J.A. and W.C. Hamilton. 1974. International Tables for X-ray Crystallography. Vol. IV (Kynoch Press, Birmingham, England), pp. 71-98
13 Kim, H.S., D. Bae, W.T. Lim, and K. Seff. 2012a. $Li^+$ exchange into zeolite Na-Y (FAU) from aqueous methanol. Singlecrystal structures of fully dehydrated Li, Na-Y. J. Phys. Chem. C. 116: 9009-9018.   DOI   ScienceOn
14 Lide, D.R. 1996/1997b. Handbook of Chemistry and Physics, 77th ed.; CRC Press: Boca Raton, FL, p 12-14.
15 Kim, H.S., S.O. Ko, and W.T. Lim. 2012b. Single-crystal structures of $Li^+$-exchanged zeolite X (FAU, Si/Al = 1.09) from aqueous solution depends on ion-exchange temperatures at 293 and 333 K. Bull. Korean Chem. Soc. 33: 3303-3310.   과학기술학회마을   DOI   ScienceOn
16 Lide, D.R. 1996/1997a. Handbook of Chemistry and Physics, 77th ed.; CRC Press: Boca Raton, FL, p 9-55.
17 Lim, W. T., S.M. Seo, L.Z. Wang, G.Q. Lu, N.H. Heo, and K. Seff. 2010. Single-crystal structures of highly $NH^{4+}$-exchanged, fully deaminated, and fully $Tl^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated. Micropor. Mesopor. Mater. 129: 11-21.   DOI   ScienceOn
18 Olson, D. H.1995. The crystal structure of dehydrated NaX. Zeolites. 15: 439-443.   DOI   ScienceOn
19 Lim, W.T., S. Y. Choi, J. H. Choi, Y. H. Kim, N. H. Heo, and K. Seff. 2006. Single-crystal structure of fully dehydrated fully K+-exchanged zeolite Y (FAU), $K_{71}Si_{121}Al_{71}O_{384}$. Micropor. Mesopor. Mater. 92; 234-242.   DOI   ScienceOn
20 Moreno-Gutierrez, B.Y. and M.T. Olguin. 2003. Mercury removal from aqueous and organo-aqueous solutions by natural Mexican erionite. J. Radioanal. Nucl. Chem. 256: 345-348.   DOI   ScienceOn
21 Su, H., H.S. Kim, S.M. Seo, S.O. Ko, J.M. Suh, G.H. Kim, and W.T. Lim. 2012. Location of $Na^+$ ions in fully dehydrated $Na^+$-saturated zeolite Y (FAU, Si/Al = 1.56). Bull. Korean Chem. Soc. 33: 2785-2788.   과학기술학회마을   DOI   ScienceOn
22 Plevert, J., F.D. Renzo, and F. Fajula. 1997. Structure of dehydrated zeolite Li-LSX by neutron diffraction: Evidence for a low-temperature orthorhombic faujasite. J. Phys. Chem. B. 101: 10340-10346.   DOI   ScienceOn
23 Seff, K. 2010. A general method for the ion exchange of zeolites utilizing the volatility of thallous compounds as leaving products. J. Phys. Chem. C. 114: 13295-13299.   DOI   ScienceOn
24 Sheldrick, G.M. 1997. SHELXL97, Program for the refinement of crystal structure. University of Gottingen, Germany.
25 Van Bekkum, H., E.M. Flanigen, P.A. Jacobs, and J.C. Jansen. 2001. Introduction to zeolite science and practice. Elsevior. p. 44.
26 Weast, R.C. 1989/1990. Handbook of Chemistry and Physics, 70th ed.; CRC Press: Cleveland, OH, p F-187.
27 Otwinowski, Z. and W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.   DOI
28 Wozniak, A., B. Marler, K. Angermund, and H. Gies. 2008. Water and cation distribution in fully and partially hydrated Li-LSX zeolite. Chem. Mater. 20: 5968-5976.   DOI   ScienceOn
29 Zhu, L. and K. Seff. 1999. Reinvestigation of the crystal structure of dehydrated sodium zeolite X. J. Phys. Chem. B. 103: 9512-9518.
30 Lee, S.H., Y. Kim, D.S. Kim, and K. Seff. 1998. Crystal structure of dehydrated $Rb^+$-exchanged zeolite X, $Rb_{71}Na_{21}Si_{100}Al_{92}O_{384}$. Bull. Korean Chem. Soc. 19; 98-103.   과학기술학회마을