Browse > Article
http://dx.doi.org/10.7745/KJSSF.2013.46.1.032

Relationship Between Relative Water Content and Ascorbate Redox Enzymes Activity in Lettuce Leaves Subjected to Soil Water Stress  

Kang, Sang-Jae (School of Applied Life Sciences, Kyungpook National University)
Park, Man (School of Applied Life Sciences, Kyungpook National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.46, no.1, 2013 , pp. 32-39 More about this Journal
Abstract
The relationship between relative water contents of lettuce leaves and biochemical activities in lettuce was examined in this study to explore an adaptation response of lettuce to water stress from soils. Soil water contents and relative water contents of leaves were positively related to show $R^2$=0.8728. Hydrogen peroxide contents of leaves rapidly increased with reduction of soil water content, whereas soluble protein contents and dry matters rapidly decreased. And chlorophyll a and b contents of leaves decreased with increase in carotenoid content. Furthermore, the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) increased dramatically, and mRNA transcript levels of APX, MDHAR and DHAR also increased. Relationship of relative water content of lettuce leaves to hydrogen peroxide, to ascorbate peroxidase activity, to dehydroascorbate reductase activity, and to monodehydroascorbate reductase activity was shown to be positively correlated. It is highly plausible from this study that these enzyme activities could be developed as an indicator of water states in soils.
Keywords
Ascorbate-related enzymes; Hydrogen peroxide; Water content; Soils; Lettuce;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment. 24:1337-1344.   DOI   ScienceOn
2 Amako, K. G.X. Chen, and K. Asada. 1994. Separate assay specific for ascorbate peroxidase and guaiacol peroxidase and for chloroplastic and cytosolic isoenzymes of ascorbate in plants. Plant Cell Physiol. 35:497-504.
3 Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15.   DOI   ScienceOn
4 Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 59:248- 254.
5 Chang, S., J. Puryear, and J. Cairney. 1993. A simple method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113-116.   DOI   ScienceOn
6 Chang, C.C., L. Ball, M.J. Fryer, N.R. Baker, S. Karpinski, and P.M. Mullineaux. 2004. Induction of ascorbate peroxidase 2 express in wounded Arabidopsis leaves does involve known wound signaling pathways but is associated with changes in photosynthesis. Plant J. 38:499-511.   DOI   ScienceOn
7 Conklin, P.L. 2001. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, Cell and Environment. 24:383-394.   DOI   ScienceOn
8 Foyer, C.H., and B. Halliwell. 1976. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133:21-25.   DOI   ScienceOn
9 Foyer, C.H., J. Rowell, and D. Walker. 1983. Measurements of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta. 157:239-244.   DOI   ScienceOn
10 Foyer, C., H. Lopez-Delgado, J.F. Dat, and I.M. Scott. 1997. Hydrogen peroxide-and glutathione-associated mechanism of acclimatory stress tolerance and signalling. Physiol. Plant. 100:241-254.   DOI   ScienceOn
11 Grantz, A.A., D.A. Brummell, and A.B. Bennett. 1995. Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol. 108:411-418.   DOI   ScienceOn
12 Hossain, M.A., Y. Nakasno, and K. Asada. 1984. Monodehydroascorbate reductase in spinach chloroplast and its participation in generation os ascorbate for scavenging of hydrogen peroxide. Plant Cell Physiol. 25:385-395.
13 Hossain, M.A., and K. Asada. 1984. Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme Plant and Cell Physiol. 25:85-92.
14 Kang, S.J., J.Y. Oh, and J.H. Kim. 2001. Effect of temperature of irrigation water on the growth and activities of some enzymes in cucumber seedling (Cucumis sativus L.) J. Kor. Soc. Hort. Sci. 42:399-404.
15 Iturbe-Ormaetxe, I., P.R. Escuredo, C. Arrese-Igor, and M. Becana. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 116:173-181.   DOI   ScienceOn
16 Kang, S.J. 2008. Response of monodehydroascorbate reductase (MDHAR) in lettuce (Lactuca sativa L.) leaves subjected to water deficit stress. J. Bio-Environ. Control. 17:273-282.   과학기술학회마을
17 Kang, S.J., J.Y. Oh, and J.D. Chung. 1999. Changes of antioxidant enzyme activities in leaves of lettuce exposed to ozone. J. Kor. Soc. Hort. Sci. 40:541-544.
18 Kim, T.S., S.J. Kang, and W.C. Park. 1999. Changes in antioxidant enzymes activities of soybean leaves subjected to water stress. J. Korean Soc. Agric. Chem. Biotechnol. 42:246-251.   과학기술학회마을
19 Leterrier, M., F.J. Corpas, J.B. Barosso, L.M. Sandalio, and L.A. del Rio. 2005. Peroxisomal monodehydroascorbate reductase. genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol. 138:2111-2123.   DOI   ScienceOn
20 Levin, A., R. Tenkaken, R. Dixon, and C. Lamb. 1994. $H_2O_2$ from the oxidative burst orchestra the plant hypersensitive disease resistance response. Cell 79:583-593.   DOI   ScienceOn
21 Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382.   DOI
22 Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci. 7:405-410.   DOI   ScienceOn
23 Pastori, G.M., G. Kiddle, J. Antonie, S. Bernard, S. Veljovic- Jovanovic, P.J. Verrier, G. Noctor, and C.H. Foyer. 2003. Leaf vitamine C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. The Plant Cell. 15:939-951.   DOI   ScienceOn
24 Morell, S., H. Follmann, M.D. Tullio, and I. Haberlein. 1997. Dehydroascorbate and dehydroascorbate reductase are phantom indicator of oxidative stress in plants. FEBS Letters. 414: 567-570.   DOI   ScienceOn
25 Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
26 Oh, M.-M, E.E. Carey, and C.B. Rajashekar. 2009. environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. and Biochem. 47:578-583.   DOI   ScienceOn
27 Sambrook, J., E. Fritsch, T. Maniatis. 1989. Molecular cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
28 Sano, S., S. Tao, Y. Endo, T. Inaba, M.A. Hossain, C. Miyake, M. Matsuo, H. Aoki, and K. Saito. 2005. Purification and cDNA cloning of chloroplastic monodehydroascorbate reductase from spinach. Biosci. Biotechnol. Biochem. 69:762-772.   DOI   ScienceOn
29 Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyakawa, T. Takeda, Y. Yabuta, and K. Yoshimura. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. of Exp. Bot. 53: 1305-1319.   DOI   ScienceOn
30 Shimaoka, T., A. Yokota, and C. Miyake. 2000. Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol. 41, 1110-1118.   DOI   ScienceOn
31 Smirnoff, N. and G.L. Wheeler. 2000. Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Plant Sci. 19: 267-290.   DOI   ScienceOn
32 Veljovic-Jovanovic, S.D., C. Pignocchi, G. Noctor, and C.H. Foyer. 2001. Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intercellular redistribution of the antioxidant system. Plant Physiol. 127:426-435.   DOI
33 Tambussi, E.A., C.G. Bartoli, J. Beltrano, J.J. Guiamet, and J.L. Araus. 2000. Oxidative damage to thylakoid proteins in water stressed leaves of wheat (Triticum aestivum). Physiologia Plantarum. 108:398-404   DOI
34 Tokunaga, T., K. Miyahara, K. Tabata, and M. Esaka. 2005. Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for Lgalactono- 1, 4-lactone dehydrogenase. Planta. 220:845-863.
35 Urano, J., T. Nakagawa, Y. Maki, T. Masumura, K. Tanaka, N. Murata, T. Ushimara. 2000. Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Letters. 466:107-111.   DOI   ScienceOn
36 Yabuta, Y., T. Maruta, K. Yshimura, T. Ishikawa, and S. Shigeoka. 2004. Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol. 45:1586-1594.   DOI   ScienceOn
37 Yoshimura, K., Y. Yabuta, T. Ishikawa, and S. Shigeoka. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 123:223-233.   DOI   ScienceOn
38 Zlatev, Z.S., F.C. Lidom, J.C. Ramalho, and I.T. Yordanov. 2006. Comparision of resistance to drought of three bean cultivar. Biologia Plantrum. 50:389-394.   DOI   ScienceOn