Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.1.066

Assessment of Plant Growth Promoting Activities of Phosphorus Solubilizing Bacteria  

Walpola, Buddhi Charana (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Song, June-Seob (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.1, 2012 , pp. 66-73 More about this Journal
Abstract
Plant growth promoting traits like production of indoleacetic acid (IAA), ammonia, hydrogen cyanide (HCN), siderophore, and like the enzyme activities of catalase, ACC deaminase, cellulase, chitinase and protease were assayed in vitro for twenty one phosphorus solubilizing bacteria isolated from soil isolates. Except SPP-5 and SPP-15 strains, all the other isolated strains produced IAA in various amounts of 10 to $23{\mu}g\;ml^{-1}$. All strains showed positive response for ammonia production and ACC deaminase activity implying that they are capable of growing in a N-free basal medium. Catalase activity was found to be superior in SPP-2, SPP-7, SPP-12 and SPP-17 compared to the other strains tested. HCN production was detected by 15 strains and among them SPP-9, SPP-15, SAph-11, and SAph-24 were found to be strong HCN producers. Except the isolates SPP-10, SPP-12, SPP-13 and SPP-14, all the other isolates produced more than 80% siderophore units. None of the strains showed cellulose and chitinase activity. SAph-8, SAPh-11, SAPh-24 and SPP-15 strains showed 35.84, 50.33, 56.64 and 34.78 U/ml protease activities, respectively. SPP-1, SPP-2, SPP-3, SPP-11, SPP-17, SPP-18, SAph-11 and SAph-24 strains showed positive response for all the tested plant growth promotion traits except cell wall degrading enzyme activities. According to the results, all the tested phosphorus solubilizing isolates could exhibit more than three or four plant growth promoting traits, which may promote plant growth directly or indirectly or synergistically. Therefore, these phosphorus solubilizing strains could be employed as bio-inoculants for agriculture soils.
Keywords
Phosphorus solubilization; plant growth promoting activities; bio-inoculants;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Banerjee, S., R. Palit, C. Sengupta, and D. Standing. 2010. Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aus. J. Crop Sci. 4:378-383.
2 Bultreys, A., I. Gheyson, H. Maraite, and E. De-Hoffman. 2001. Characterization of fluorescent and non fluorescent peptide siderophores produced by Pseudomonas syringe strains and their potential use in strain identification. App. Environ. Microbiol. 67:1718-1727.   DOI
3 Cappucino, J. C., and N. Sherman. 1992. Microbiolgy: A laboratory manual. Benjamin/Cummings Publishing Company, New York, pp 125-179.
4 Chaiharn, M. and S. Lumyong. 2009. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Nothern Thailand. W. J. Microbiol. Biotechnol. 25:305-314.   DOI
5 Chen, Z., S. Ma, and L. L. Liu. 2008. Studies on phosphorus solubilizing activity of a strain of phospho bacteria isolated from chestnut type soil in China. Biores. Technol. 99:6702-6707.   DOI
6 Cupp-Enyard, C. 2008. Sigmas's non-specific protease activity assay-Casein as a substrate. J. Vis. Exp. (19), e899, DOI:10.3791/899.
7 Dey, R., K. K. Pal, D. M. Bhatt, and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growthpromoting rhizobacteria. Microbiol. Res. 159:371-394.   DOI
8 Dobbelaere S., A. Croonenborghs, A. Thys, D. Ptacek, Y. Okon, and J. Vanderleyden. 2002. Effects of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol. Fertil. Soils. 36:284-297.   DOI
9 Donate-Correa, J., M. Leon-Barrios and R. Perez-Galdona, 2005. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil, 266:261-272.   DOI
10 Dworkin, M. and J. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75:592-601.
11 Egamberdiyeva, D. 2005. Plant growth promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J. Plant Nutr. Soil Sci. 168:94-99.   DOI
12 Farah, A., A. Iqbal, M. S. Khan. 2006. Screening of freeliving rhizospheric bacteria for their multiple plant growth promoting activity. Microbiol. Res. 63:11-19.
13 Folasade, M. O. and O. A. Joshua. 2008. Some properties of extracellular protease from Bacillus licheniformis Lbb1-11 isolated from 'iru', A traditionally fermented African locust bean condiment. J. Biotechnol. Biochem. 3:42-46.
14 Glick, B. R. and Y. Bashan. 1997. Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 11:353-378.
15 Gracia de Salamone, I. E., R. K. Hynes, and L. M. Nelson. 2001. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbiol. 47:404-411.   DOI   ScienceOn
16 Gulati, A., P. Vyas, P. Rahi, and R. C. Kasana. 2009. Plant growth promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol. 58:371-377.   DOI
17 Jeon, J. S., S. S. Lee, H. Y. Kim, T. S. Ahn, and H. G. Song. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41:271-276.
18 Gutierrez, C. K., G. Y. Matsui, D. E. Lincoln, and C. R. Lovell. 2009. Production of the phytohormone indole-3-acetic acid by the estuarine species of the genus Vibrio. Appl. Environ. Microbiol. 75:2253-2258.   DOI
19 Gutierrez-Manero, F. J., B. Ramos-Solano, A. Probanza, J. Mehouachi, F. R. Tadeo and M. Talon. 2001. The plantgrowth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111:206-211.   DOI   ScienceOn
20 Hamdali, H., M. Hafidi, M. J. Virolle, and Y. Ouhdouch. 2008. Rock phosphate solubilizing Actinimycetes: Screening fro plant growth promoting activities. World J. Microbiol. Biotechnol. 24:2565-2575.   DOI
21 Jung, Y. P., K. C. Kyung, K. Y. Jang, and M. H. Yoon. 2011. Isolation and characterization of plant growth promoting rhizobacteria from waste mushroom bed from Agaricus bisporus. Korean J. Soil Sci. Fert. 44:866-871.   DOI
22 Kim, K. J., Y. J. Yang, and J. G. Kim. 2003. Purification and characterization of chitinase from Streptomyces sp M-20. J. Biochem. Mol. Biol. 36:185-189.   DOI
23 Lie, J., D. H. Ovakim, T. C. Charles, and B. R. Glick. 2000. ACC deaminase minus mutant of Enterobacter cloaca UW4 no longer promotes root elongation. Curr. Microbiol. 41:101-105.   DOI   ScienceOn
24 Lipping, Y., X. Jiatao, J. Daohong, F. Yanping, L. Guoqing, and L. Fangcan. 2008. Antifungal substances produced by Penicillium oxalicum strain PY-1-potential antibiotics against plant pathogenic fungi. World J. Microbiol. Biotechnol. 24:909-915.   DOI
25 Nagrajkumar, M., R. Bhaskaran, and R. Velazhahan. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath of blight pathogen. Microbiol. Res. 159:73-81.   DOI
26 Lucy, M., E. Reed, and B. R. Glick. 2004. Application of free living plant growth promoting rhizobacteria. Antonie van leeuwenhoek. 86:1-25.   DOI   ScienceOn
27 Mittal, V., O. Singh, H. Nayyar, J. Kaur, and R. Tewari. 2008. Stimulatory effect of phosphate solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol. Biochem. 40:718-727.   DOI
28 Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27:31-36.   DOI   ScienceOn
29 Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270.   DOI   ScienceOn
30 O' Sullivan, D. J. and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in the suppression of plant root pathogens. Microbiol. Rev. 56:662-676.
31 Pandey, A., P. Trivedi, B. Kumar and L. M. S. Palni. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a subalpine location in the Indian Central Himalaya. Curr. Microbiol. 53:102-107.   DOI
32 Payne, S. M. 1994. Detection, isolation and characterization of siderophores. In, Methods Enzymol. 235:329-344.   DOI
33 Sahin, F., R. Cakmakci, and F. Kantar. 2004. Sugar beet and barely yields in relation to inoculation with $N_2$ fixing and phosphate solubilizing bacteria. Plant Soil. 265:123-129.   DOI
34 Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol. Plant. 118:10-15.   DOI   ScienceOn
35 Poonguzhali, S., M. Madhaiyan, and T. Sa. 2008. Isolation and Identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18:773-777.
36 Robert, W. K. and P. S. Cabib. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134:169-176.
37 Sawar, M. and R. J. Kremer. 1995. Enhanced suppression of plant growth through production of L-tryptophan compounds by deleterious rhizobacteria. Plant Soil. 172:261-269.   DOI   ScienceOn
38 Schippers, B., A. W. Bakker, R. Bakker, and R. Van Peer. 1990. Beneficial and deleterious effects of HCN producing pseudomonads on rhizosphere interactions. Plant Soil. 129:75-83.   DOI
39 Schwyn, R. and J. B. Neilands. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160:47-56.   DOI   ScienceOn
40 Streit, F., U. Christians, H. M. Schiebel, K. L. Napoli, L. Ernst, A. Linck, B. D. Kahan, and K. F. Sewing. 1996 Sensitive and specific quantification of sirolimus (rapamycin) and its metabolites in blood of kidney graft recipients by HPLC/electrospray-mass spectrometry. Clin. Chem. 42:1417-1425.
41 Vikram, A., and H. Hamzehzarghani. 2008. Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiate L. Wilczec). Res. J. Microbiol. 3:62-72.   DOI
42 Alexander, D. B., and D. A. Zuberer. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12:39-45.   DOI
43 Wani, P. A., M. S. Khan, and A. Zaidi. 2007a Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta. Agron. Hung 55:315-323.   DOI
44 Wani, P. A., M. S. Khan, and A. Zaidi. 2007b. Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J. Plant Nutr. Soil Sci. 170:283-287.   DOI
45 Zaid, A., and M. S. Khan. 2006. Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram Bradyrhizobium symbiosis. Turk. J. Agric. 30:223-230.
46 Ahmad, F., I. Ahmad, and M. S. Khan. 2008. Screening of free living rhizobacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:173-181.   DOI   ScienceOn