Browse > Article
http://dx.doi.org/10.7745/KJSSF.2011.44.4.650

Investigation of Siderophore production and Antifungal activity against Phytophthora capsici as related to Iron (III) nutrition by Lysobacter antibioticus HS124  

Ko, Hyun-Sun (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center)
Tindwa, Hamisi (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center)
Jin, Rong De (Agricultural Environment and Resources Research Center, Jilin Academy of agricultural Sciences)
Lee, Yong-Seong (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center)
Hong, Seong-Hyun (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center)
Hyun, Hae-Nam (Major of plant resources & environment, Cheju National University)
Nam, Yi (Ansung Training Institute, National Agricultural Cooperative Federation)
Kim, Kil-Yong (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.44, no.4, 2011 , pp. 650-656 More about this Journal
Abstract
Lysobacter antibioticus HS124 isolated from pepper rhizosphere soil produced catechol type siderophore. Purified siderophore by Diaion HP-20 and silica gel column chromatography showed several hydroxyl functional groups adjacent to benzene rings by analysis of $^1H$ NMR spectroscopy. The strain HS124 showed different activities to suppress Phytophthora capsici with different concentrations of exogenous Fe (III) in minimal medium where antifungal activity with $100{\mu}M$ Fe (III) was approximately 1.5 times higher than in absence of Fe (III). Bacterial population in this Fe (III)-amended medium was also highest with $8.9{\times}10^8\;CFU\;ml^{-1}$ which also corresponded to the strongest siderophore activity. When grown in rich medium (minimal medium with N, $P_2O_5K_2O$ and glucose), HS124 exhibited approximately 2 times stronger antifungal activity compared to minimal medium. In pot trials, treatments of bacterial culture grown in rich medium with (C1) or without (C2) $100{\mu}M$ Fe (III) exhibited a high protection of pepper plants from disease, compared to medium only with (M1) or without (M2) $100{\mu}M$ Fe (III). Especially, treatment C1 showed the best disease control effect of about 70 %. Thus, the strain HS124 should be recommended as a potential biocontrol agent against P. capsici in pepper.
Keywords
Lysobacter antibioticus; Siderophore; Phytophthora capsici; Antifungal activity; Biocontrol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Samir, S., K.Vaidehi, and D. Anjana. 1992. Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum M. Curr Microbiol 25:347-351.   DOI   ScienceOn
2 Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56.   DOI   ScienceOn
3 Stepnaya, O.A., I.M. Tsfasman, I.A. Chaika, T.A. Muranova, and I.S. Kulaev. 2008. Extracellular yeast-lytic enzymes of the bacterium Lysobacter sp. XL 1. Biochemistry 73:310-314.
4 Van Rij, E.T., M. Wesselink, T.F.C. Chin-A-Woeng, G.V. Bloemberg, and B.J.J. Lugtenberg. 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. The American Phytopathological Society 17:557-566.
5 Vilches, C., C. Mendez, C. Hardission, and J.A. Salas. 1990. Biosynthesis of oleandomycin by Streptomyces antibioticus: influence of nutritional conditions and development of resistance. J. Gen. Microbiol. 136:1447-1454.   DOI   ScienceOn
6 Cruz, R., M.E. Ariasand, and J. Soliveri. 1999. Nutritional requirement for the production of pyrazoloisoquinolinone antibiotics by Streptomyces griseocirneus. NCIMB 40447. Appl. Microbiol. Biotechnol. 53:115-119.   DOI   ScienceOn
7 Csaky, T. 1948. On the estimation of bound hydroxylamine. Acta. Chemica. Scandinavica. 2:450-454.   DOI
8 Keel, C., C. Voisard, C.H. Berling, G. Kahr, and G. Defago. 1989. Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584-589.   DOI
9 Ko, H.S., R.D. Jin, H.B. Krishnan, S.B. Lee, and K.Y. Kim. 2009. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-Hydroxylacetic acid and several lytic enzymes. Curr. Microbiol. 59:608-615.   DOI   ScienceOn
10 Kunimoto, R,K., M. Aragaki, J.E. Hunter, and W.H. Ko. 1976. Phytophthora capsici, corrected name for the cause of Phytophthora blight of macadamia racemes. Phytopathology 66:546-548.   DOI
11 Kraemer, S.M. 2005. Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Science 66:3-18.
12 Laine, M.H., M.T. Karwoski, L.B. Raaska, and T.M. Mattila. 1996. Antimicrobial activity of Pseudomonas spp. against food poisoning bacteria and moulds. Lett. Appl. Microbiol. 22:214-218.   DOI   ScienceOn
13 Cho, M.Y. 2007. Biocontrol of Phytophthora blight (Phytophthora capsici) in pepper by Lysobacter enzymogenes LE429. A Master's thesis, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea pp. 50.
14 Loper, J.E., and M.D. Henkels. 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63:99-105.
15 Loper, J.E., and M.D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65:5357- 5363.
16 Macagnan, D., R.S. Romeiro, A.W.V. Pomella, and J.T. deSouza. 2008. Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes. Biol. Control 47:309-314.   DOI   ScienceOn
17 Arnow, L.E. 1937. Colorimetric determination of the compounds of 3,4-dihydroxyphenylalanine-tyrosine mixture. J Biol Chem 118:531-537.
18 Bolton, H., J.K. Fredrickson, and L.F. Elliott. 1993. Microbial ecology of the rhizosphere. In: Metting, F.B. (Ed). Soil microbial ecology: Applications in Agricultural and Environmental Management. Marcel Dekker New York. p. 27-63.
19 Bultreys, A. and I. Gheysen. 2000. Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Appl Environ Microbiol 66:325-331.   DOI   ScienceOn
20 Chaiharn, M., S. Chunhaleuchanon, and S. Lumyong. 2009. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J. Microbiol & Biotechnol 25(11):1919-1928.   DOI   ScienceOn
21 Pal, K.K., K.V. Tilak, A.K. Saxena, R. Dey, and C.S. Singh. 2001. Suppression of maize root disease caused by Macrophomina phaseolina, Fusarium moniliforme and F. graminearum by plant growth promoting rhizobacteria. Microbiol Res.156:209-223.   DOI   ScienceOn
22 Weller, D.M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. of Phytopathol. 26:379-407.   DOI   ScienceOn
23 Meyer, J.M. and M.A. Abdallah. 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicalchemical properties. J. Gen. Microbiol. 107:319-328.   DOI   ScienceOn
24 Meyers, D., R. Cooper, L. Dean, J.H. Johnson, D.S. Slusarchyk, W.H. Trejo, and P.D. Singh. 1985. Catacandins, novel anticandidal antibiotics of bacterial origin. J. Antibiot. 38:1642-1648.   DOI
25 Meziane, H., I. Van Der Sluis, L.C. Van Loon, M. Hofte, and P.A.H.M Bakker. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6:177-185.   DOI   ScienceOn
26 Nishio, T. and Y. Ishida. 1989. Distribution of iron solubilizing bacteria in sediment of a small lagoon. Nippon Suisan Gakkaishi 55(11):1955-1960.   DOI
27 Payne, S.M. 1994. Detection, isolation, and characterization of siderophore. Method Enzymol. 235:329-344.   DOI
28 Ristaino, J.B. 1990. Intra specific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North Carolina. Phytopathology 80:1253-1259.   DOI