Browse > Article
http://dx.doi.org/10.7745/KJSSF.2011.44.2.221

Response of Soil Microbial Communities to Applications of Green Manures in Paddy at an Early Rice-Growing Stage  

Kim, Eun-Seok (Gyeongsangnamdo Agricultural Research and Extension Services)
Lee, Young-Han (Gyeongsangnamdo Agricultural Research and Extension Services)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.44, no.2, 2011 , pp. 221-227 More about this Journal
Abstract
Applications of green manures generally improve the soil quality in rice paddy in part through restructuring of soil microbial communities. To determine how different green manures affect soil microbial communities during the early stages of rice growth, fatty acid methyl ester (FAME) profiles were used to the effects of different management practices: 1) conventional farming (CF), 2) no-treatment (NT), 3) Chinese milk vetch (CMV), 4) green barley (GB), and 5) triticale in paddy field. With applications of green manures, soil organic matter was significantly higher than CF, while soil Na concentration was significantly lower compared with CF (p<0.05). Total soil microbial biomass of CMV was higher (p<0.05) than NF by approximately 31%. The highest ratio of monounsaturated fatty acid to saturated fatty acid was found in the GB plot, followed by CMV and triticale compared with CF (p<0.05), possibly indicating that microbial stress was less in GB and CMV plots. Populations of Gram-negative bacteria and arbuscular mycorrhizal fungi also were significantly higher green manures than CF (p<0.05). Our findings suggest that GB should be considered as optimum green manure for enhancing soil microbial community at an early growing stage in paddy field.
Keywords
FAME; Microbial community; Paddy; Green manure; Green barley;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Wright, S.F. and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97-107.   DOI   ScienceOn
2 Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294.   DOI   ScienceOn
3 Zhang, C., X. Liu, F. Dong, J. Xu, Y. Zheng, and J. Li. 2010. Soil microbial communities response to herbicide 2,4-dichlorophenoxyacetic acid butyl ester. Eur. J. Soil Biol. 46:175-180.   DOI   ScienceOn
4 Zhong, W., T. Gu, W. Wang, B. Zhang, X. Lin, Q. Huang, and W. Shen. 2010. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:511-522.   DOI   ScienceOn
5 Pennanen, T. 2001. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH-a summary of the use of phospholipids fatty acids, $Biolog^{(R)}$ and 3H-Thymidine incorporation methods in field studies. Geoderma 100:91-126.   DOI   ScienceOn
6 Rajendran, N., O. Matsuda, Y. Urushigawa, and U. Simidu. 1994. Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid fatty acid analysis. Appl. Environ. Microbiol. 60:248-257.
7 Reganold, J.P., L.F. Elliott, and Y.L. Unger. 1987. Long-term effects of organic and conventional farming on soil erosion. Nature 330:370-372.   DOI
8 Rillig, M.C., S.F. Wright, K.A. Nichols, W.F. Schmidt, and M.S. Torn. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167-177.   DOI   ScienceOn
9 SAS. 2006. SAS enterprise guide Version 4.1. SAS Inst., Cary, NC.
10 Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668.   DOI   ScienceOn
11 Sttenworth, K.L., L.E. Jackson, F.J. Calderon, M.R. Stromberg, and K.M. Scow. 2003. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil. Biol. Biochem. 35:489-500.   DOI   ScienceOn
12 Teasdale, J.R. and C.S.T. Daughtry. 1993. Weed suppression by live and desiccated hairy vetch (Vicia villosa). Weed Sci. 41:207-212
13 Trinsoutrot, I., S. Recous, B. Bentz, M. Lineres, D. Cheneby, and B. Nicolardot. 2000. Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Sci. Soc. Am. J. 64:918-926.   DOI   ScienceOn
14 Lee, Y.H., B.K. Ahn, and J.H. Lee. 2010. Effects of rice straw application and green manuring on selected soil physical properties and microbial biomass carbon in no-till paddy field. Korean J. Soil Sci. Fert. 43:105-112.
15 Lee, Y.H., D. Son, and Z.R. Choe. 2009. Effects of ricewinter cover crops cropping systems on the rice yield and quality in no-tillage paddy field. Korean J. Environ. Agri. 28:53-58.   DOI
16 Lee, Y.H., S.T. Lee, J.Y. Heo, M.G. Kim, K.P. Hong, W.D. Song, C.W. Rho, J.H. Lee, W.T. Jeon, B.G. Ko, K.A. Roh, and S.K. Ha. 2010. Monitoring of chemical properties from paddy soil in Gyeongnam Province. Korean J. Soil Sci. Fert. 43:140-146.
17 Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.
18 Mac Rae, R.Y. and G.R. Mehuys. 1985. The effect of green manuring on the physical properties of temperate area soils. Adv. Soil Sci., Vol. 3. Springer-Verlag, Inc., NY, pp71-94.
19 Miedaner, T., C. Reinbrecht, U. Lauber, M. Schollenberger, and H.H. Geiger. 2001. Effects of genotype and genotypeenvironment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breeding 120:97-105.   DOI   ScienceOn
20 NIAST. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea (In Korean).
21 Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16.   DOI   ScienceOn
22 Park, T.I., J.H. Seo, O.K. Han, K.H. Park, J.S. Choi, J.G. Kim, J.C. Park, H.S. Kim, H.Y. Heo, S.B. Baek, Y.U. Kwon, H.H. Park, M.S. Kang, K.G. Park, and S.J. Suh. 2009. A new auricleless barley cultivar "Dami" for whole crop forage. Korean J. Breed. Sci. 41:349-353.
23 Pankhurst, C.E., A. Pierret, B.G. Hawke, and J.M. Kirby. 2002. Microbiological and chemical properties of soil associated with macropores at different depths in a redduplex soil in NSW Australia. Plant soil 238:11-20.   DOI   ScienceOn
24 Cobb, D., R. Feber, A. Hopkins, L. Stockdale, T. O'Riordan, B. Clements, L. Firbank, K. Goulding, S. Jarvis, and D. Macdonald. 1999. Intergrating the environmental and economic consequences of converting to organic agriculture: evidence from a case study. Land Use Policy 16:207-221.   DOI   ScienceOn
25 Drenovsky, R.E., D. Vo, K.J. Graham, and K.M. Scow. 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48:424-430.   DOI   ScienceOn
26 Fries, M.R., G.D. Hopkins, P.L. McCarty, L.J. Forney, and J.M. Tiedje. 1997. Microbial succession during a field evaluation of phenol and toluene as the primary substrates for trichloroethene cometabolism. Appl. Environ. Microbiol. 63:1515-1522.
27 Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.
28 Frostegard, Å. and E. Baath. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22:59-65.   DOI
29 Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.
30 Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52:794-801.
31 Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116.   DOI   ScienceOn
32 Ibekwe, A.M. and A.C. Kennedy. 1998. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant Soil 206:151-161.   DOI   ScienceOn
33 Khalil, M.I., M.B. Hossain, and U. Schmidhalter. 2005. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol. Biochem. 37:1507-1518.   DOI   ScienceOn
34 Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
35 Balser, T., K.K. Treseder, and M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604.   DOI   ScienceOn
36 Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278.   DOI   ScienceOn
37 Bossio, D.A., K.M. Scow, N. Gunapala, and K.J. Graham. 1998. Determinants of soil microbial communities: effects of management, season and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36:1-12.   DOI   ScienceOn
38 Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595.   DOI   ScienceOn
39 Burgos, N.R. and R.E. Talbert. 1996. Weed control by spring cover crops and imazethapyr in no-till southern pea (Vigna unguiculata). Weed Technol. 10:893-899.
40 Buyer, J.S. and L.E. Drinkwater. 1997. Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities. J. Microbiol. Meth. 30:3-11.   DOI   ScienceOn
41 Cavigelli, M.A., G.P. Robertson, and M.J. Klug. 1995. Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170:99-113.   DOI   ScienceOn