Browse > Article

Assessment Techniques of Heavy Metal Bioavailability in Soil - A critical Review  

Kim, Kwon-Rae (Centre for Environmental Risk Assessment and Remediation, University of South Australia)
Owens, Gary (Centre for Environmental Risk Assessment and Remediation, University of South Australia)
Naidu, Ravi (Centre for Environmental Risk Assessment and Remediation, University of South Australia)
Kim, Kye-Hoon (Department of Environmental Horticulture, University of Seoul)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.40, no.4, 2007 , pp. 311-325 More about this Journal
Abstract
The concept of metal bioavailability, rather than total metal in soils, is increasingly becoming important for a thorough understanding of risk assessment and remediation. This is because bioavailable metals generally represented by the labile or soluble metal components existing as either free ions or soluble complexed ions are likely to be accessible to receptor organismsrather than heavy metals tightly bound on soil surface. Consequently, many researchers have investigated the bioavailability of metals in both soil and solution phases together with the key soil properties influencing bioavailability. In order to study bioavailability changes various techniques have been developed including chemical based extraction (weak salt solution extraction, chelate extraction, etc.) and speciation of metals using devices such as ion selective electrode (ISE) and diffusive gradient in the thin film (DGT). Changes in soil metal bioavailability typically occur through adsorption/desorption reactions of metal ions exchanged between soil solution and soil binding sites in response to changes in environment factors such as soil pH, organic matter (OM), dissolved organic carbon (DOC), low-molecular weight organic acids (LMWOAs), and index cations. Increasesin soil pH result in decreases in metal bioavailability through adsorption of metal ions on deprotonated binding sites. Organic matter may also decrease metal bioavailability by providing more negatively charged binding sites, and metal bioavailability can also be decreases as concentrations of DOC and LMWOAs increase as these both form strong chelate complexeswith metal ions in soil solution. The interaction of metal ions with these soil properties also varies depending on the soil and metal type.
Keywords
Metal bioavailability; Dissolved organic carbon (DOC); Low-molecular weight organic carbon (LMWOAs); Soil; Speciation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Krishnamurti, G.S.R., and R. Naidu. 2003. Solid-solution equilibria of cadmium in soils. Geoderma 113(1-2):17-30.   DOI   ScienceOn
2 Nolan, A.L., M.J. McLaughlin, and S.D. Mason. 2003. Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using donnan dialysis. Environ. Sci. Tech. 37(1):90-98   DOI   ScienceOn
3 Novozamsky, I., T.H.M. Lexmond, and V.J.G. Houba. 1993. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. J. Environ. Anal. Chem.51:47-58   DOI
4 Street, J. J., B.R. Saber, and W.L. Lindsay. 1978. Influence of pH, phosphorus, Cd, sewage sludge and incubation time on the solubility and plant uptake of Cd. J. Enviom. Qual. 7:286-290
5 Wolt, J., and J.G. Graveel. 1986. A rapid method for obtaining soil solution using vacuum displacement. Soil Sci. Soc. Am. J. 50:602-605   DOI   ScienceOn
6 Campbell, P.G.C. 1995. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In A. Tessier, and D.R. Tumer (eds.) Metal speciation and bioavailability in aquatic systems. New York, John Wiley & Sons
7 Boekhold, A.E., E.J.M. Temminghoff, and S.E.A.T.M. Vanderzee. 1993. Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil. J. Soil Sci. 44:85-96   DOI   ScienceOn
8 Hees, P.A.Wv., U.S. Lundstrom, H. Boren, and B. Allard. 1999. Determination of low molecular weight organic acids in soil solution by HPLC. Talanta 48: 173-179   DOI   ScienceOn
9 Alloway, B. J. 1990. Soil processes and the behaviour of metals. p. 7-27. In B. J. Alloway (ed.) Heavy metals in soils. New York, Blackie and Sons
10 Blaylock, M.J, D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B.D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Tech. 31(3):860-865   DOI   ScienceOn
11 Buchter, B., B. Davidoff, M.C Amacher, C. Hinz, I.K. Iskandar, and H.M. Selim. 1989. Phosphorus dynamics during pedogenesis on serpentinite. Soil Sci. 148:370-379   DOI
12 Christensen, T.H., and P.M. Huang. 1999. Solid phase cadmium and the reactions of aqueous cadmium with soil surfaces. p. 65-96. In MJ. McLaughlin, and B.R. Singh (eds.) Cadmium in soils and plants. Dordrecht, The Netherlands, Kluwer Academic Publishers
13 Fitch, A., and P.A. Helmke. 1989. Donnan equilibrium/graphite furnace atomic absorption estimates of soil extract complexation capacities. Anal Chem. 61(11):1295-1298   DOI
14 Fotovat, A., and R. Naidu. 1998. Changes in composition of soil aqueous phase influence chemistry of indigenous heavy metals in alkaline soils and acidic soils. Geoderma 84:213-234   DOI   ScienceOn
15 Furrer, G., and W. Stumm. 1986. The coordination chemistry of weathering: I. Dissolution kinetics of d-$Al_{2}O_{3}$and BeO. Geochim. Cosmochim. Acta 50:1847-1860   DOI   ScienceOn
16 Gramss, G., K.D. Voigt, F. Bublitz, and H. Bergmann. 2003. Increased solubility of (heavy) metals in soil during microbial transformations of sucrose and casein amendments. J. Basic Microbial 43(6):483-498   DOI   ScienceOn
17 Gupta, S.K., and C. Aten. 1993. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. J. Environ. Anal Chem. 51:25-46   DOI
18 Hinsinger, P. 2001. Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. p. 25-40. In G.R. Gobran, W.W. Wenzel, and E. Lombi (eds.) Trace elements in the rhizosphere. Boca Raton: CRC
19 Hamon, R.E., and J.M. McLaughlin. 1999. Use of the hyperaccumulator Thlaspi caerulescens for bioavailable contaminant stripping. p. 908-909. In W.W. Wenzel (ed.)Proc. 5th Intern. Conf. Biogeochemistry of Trace Elements-ICOBTE. Vienna
20 Hees, P.A.Wv., U.S. Lundstrom, and R. Giesler. 2000. Low molecular weight organic acids and their complexes in soil solution-composition, distribution and seasonal variation in three podzolized soils. Geoderma 94:173-200   DOI   ScienceOn
21 Hue, N.V., G.R. Craddock, and F. Adams. 1986. Effect of organic acids on aluminium toxicity in subsoils. Soil Sci. Soc. Am. J. 50:28-34   DOI   ScienceOn
22 Krishnamurti, G.S.R., P.M. Huang, K.C.J.V. Rees, L.M. Kozak, and H.P.W. Rostad. 1995. A new soil test method for the determination of plant-available cadmium in soils. Commun. Soil Sci. Plant Anal. 26(17&18):2857-2867   DOI   ScienceOn
23 Lagerwerff, J, V., and D.L. Brower. 1972. Exchange adsorption of trace quantities of cadmium in soils treated with chlorides of aluminium, calcium and sodium. Soil Sci. Soc. Am. Proceedings 36:734-737
24 Lundstrom, U.S., and L.O. Ohman. 1990. Dissolution of feldspars in the presence of natural, organic solutes. J Soil Sci. 41:359-369   DOI
25 Manley, E.P., and L. J. Evans. 1986. Dissolution of feldspars by lowmolecular-weight aliphatic and aromatic acids. Soil Sci. 141:106 112   DOI
26 McBride, M., S. Sauve, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. 48:337-346   DOI   ScienceOn
27 McBride, M.B., and J.J. Blasiak. 1979. Zinc and copper solubility as a functionof pH in an acid soil. Soil Sci. Soc. Am. J 43 :866-870   DOI
28 Naidu, R., R.S. Kookana, M.E. Sumner, R.D. Harter, and K.G. Tiller. 1997. Cadmium sorption and transport in variable charge soils: A Review. J. Environ. Qual. 26:602-617   DOI   ScienceOn
29 McKenzie, R.M.1980. The adsorption of lead and other heavy metal ions on oxides of manganese and iron. Austr. J. Soil Res. 18:61-73   DOI
30 Naidu, R., N.S. Bolan, R.S. Kookana, and K.G. Tiller. 1994. Ionicstrength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45:419-429   DOI   ScienceOn
31 Nakhone, L.N., and S.D. Young. 1993. The significance of (radio-)labile cadmium pools in soil. Environ. Pollut. 82:73-77   DOI   ScienceOn
32 Nolan, A.L., H. Zhang, and M.J. McLaughlin. 2005. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. J. Environ. Qual. 34:496-507   DOI   ScienceOn
33 O'Connor, G.A. 1988. Use and misuse of the DTPA soil test. J. Environ. Qual. 17:715-718   DOI
34 Romkens, P.F.A.M., and J. Dolfing. 1998. Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Techol. 32:363-369   DOI   ScienceOn
35 Sauve, S., W.A. Norvell, M. McBride, and W.H. Hendershot. 2000b. Speciation and complexation of cadmium in extracted soil solutions. Environ. Sci. Tech. 34(2):291-296   DOI   ScienceOn
36 SSSA Stevenson, F.J. 1994. Humus chemistry. Genesis, composition, reactions. New York: John Wiley & Sons
37 Strobel, B.W. 2001. Influence of vegetation on low-molecularweight carboxylic acids in soil solution-a review. Geoderma 99(34):169-198   DOI   ScienceOn
38 Weng, L., T.M. Lexmond, A. Wolthoom, E.J.M. Temminghoff, and W.H. Van Riemsdijk 2003. Phytotoxicity and bioavailability of nickel: Chemical speciation and bioaccumulation. Environ. Toxicol. Chem. 22(9):2180-2187   DOI   ScienceOn
39 Tiller, K.G. 1979. Applications of isotopes on micronutrient studies. IAEA-SM-2350/50. In International Atomic Energy Agency (ed.) Isotopes andradiation in research on soil-plant relationships. Vienna, IAEA: International Atomic Energy Agency
40 Tiller, K.G., V.K. Nayyar, and P.M. Clayton. 1979. Specific and non-specific sorption of Cd by soil clays as influenced by zinc and calcium. Austr. J. Soil Res. 17:17-28   DOI
41 You, S.J., Y. Yin, and H.E. Allen. 1999. Partitioning of organic matter in soils: effects of pH and water/soil ratio. Sci. Total Environ. 227:155-160   DOI   ScienceOn
42 Zabowski, D. 1989. Limited release of soluble organics from roots during the centrifugal extraction of soil solutions. Soil Sci. Soc. Am. J 53:977-979   DOI
43 Grinsted, MJ., MJ. Redley, R.E. White, and P.R. Nye. 1982. Plant induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. I. Change and the increase in P concentration in the soil solution. New Phytologist 91:19-29   DOI   ScienceOn
44 Prueo., A. 1997. Action values for mobile ($NH_4NO_3$) trace elements in soils based on the German national standard DIN 19730. p. 415-423. In R. Prost (ed.)Contaminated soils. Proc. 3rd Int. Conf. on the Biogeochemistry of Trace Elements. Paris: INRA
45 Zhu, B., and A.K. Alva. 1993. Distribution of trace metals in some sandy soils under citrus production. Soil Sci. Soc. Am. J. 57:350-355   DOI   ScienceOn
46 Sparks, D.L. 1995. Environmental soil chemistry. San Diego, California: Academic press. p. 81-97
47 Symeonides, C, and S.G. McRae. 1977. The assessment of plant available cadmium in soils. J. Enviom. Qual. 6:120-123
48 Zhang, H., F. Zhao, B. Sun, W. Davison, and S.P. McGrath. 2001. A new method to measure effective soil solution concentration predicts copper availability to plants. Environ. Sci. Techol. 35:2602-2607   DOI   ScienceOn
49 Benjamin, M.M., and J.O. Leckie. 1981. Conceptual model for metal-ligand-surface interactions during adsorption. Environ. Sci. Techol. 15: 1050-1057   DOI   ScienceOn
50 Christensen, J, B., and T.H. Christensen. 1999. Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ. Sci. Tech. 33(21):3857-3863   DOI   ScienceOn
51 Shen, Y.H. 1999. Sorption of natural dissolved organic matter on soil. Chemosphere 38:1505-1515   DOI   ScienceOn
52 Adams, F. 1974. Soil solution. p. 441-481. In E.W. Carson (ed.) The plant root and its environment. Charlottesville, VA: Univ. Press of Virginia
53 Bermond, A, I. Yousfi, and J.P. Ghestem. 1998. Kinetic approach to the chemical speciation of trace metals in soils. Analyst 123:785-789   DOI   ScienceOn
54 Herbert, B, E., and P.M. Bertsch. 1995. Characterization of dissolved and colloidal organic matter in soil solution: a review. p 63-88. In W.W. McFee, and J.M. Kelly (eds.) Carbon forms and functions in forest soils. Madison, Soil science society of America
55 Almas, A.R., M.B. McBride, and B.R. Singh. 2000. Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Science 165:250-259   DOI
56 Beckett, P.H.T. 1989. The use of extractant in studies on trace metals in soils, sewage sludges, and sludge-treated soils. Adv. Soil Sci. 9:143-176
57 Krishnamurti, G.S.R., and R. Naidu. 2000. Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Austr. J. Soil Res. 38:991-1004   DOI   ScienceOn
58 Schwab, A.P., Y. He, and M.K. Banks. 2005. The influence of organic ligands on the retention of lead in soil. Chemosphere 61(6):856-866   DOI   ScienceOn
59 Wehrli, B., B. Sulzberger, and W. Stumm. 1989. Redox processes catalyzed by hydrous oxide surfaces. Chem. Geol. 78:167-179   DOI   ScienceOn
60 Weng, L., E.J.M. Temminghoff, S. Lofts, E. Tipping, and W.H. Van Riemsdijk. 2002. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Tech. 36(22):4804-4810   DOI   ScienceOn
61 Blaser, P. 1994. The role of natural organic matter in the dynamics of metals in forest soils. p. 943-960. In N. Senesi, and T.M. Miano (eds.) Humic substances in the global environment and implications on human health. Amsterdam, Elsevier Science B.V.
62 Fox, T.R. 1995. The influence of low-molecular-weight organic acids on properties and processes in forest soils. p. 43-62. In W.W. McFee, and J.M. Kelly (eds.) Carbon forms and functions in forest soils. Madison,Soil Science Society of America
63 Cabrera, D., S.D. Young, and D.L. Rowell. 1988. The toxicity of cadmium to barley plants as affected by complex formation with humic acid. Plant and Soil 105:195-204   DOI
64 Chen, Y., Z. Shen, and X. Li. 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry 19(10):1553-1565   DOI   ScienceOn
65 Jones, D.L. 1998. Organic acids in the rhizosphere a critical review. Plant and Soil 205:25-44   DOI   ScienceOn
66 Sauve, S, M.B. Mcbride, and W.H. Hendershot. 1997. Speciation of lead in contaminated soils. Environ. Pollut. 98(2): 149-155   DOI   ScienceOn
67 Whitten, M.G., and G.S.P. Ritchie. 1991. Calcium chloride extractable cadmium as an estimate of cadmium uptake by subterranean clover. Austr. J. Soil Res. 29:215-221   DOI
68 Krislmamurti, G.S.R, and P.M. Huang. 1999. The nature of organic matter of soils with contrasting cadmium phytoavailability. p. 2025. In RS. Swift (ed.) Humic substances down under 9th IHEE meeting. Sept.; Adelaide, Australia
69 Thurman, E.M. 1985. Organic geochemistry of natural waters. Dordrecht, Nijhoff
70 Xue, H.B., S. Jansen, A. Prasch, and L. Sigg. 2001. Nickel Speciation and complexation kinetics in freshwater by ligand exchange and DPCSV. Environ. Sci. Techol. 35:539-546   DOI   ScienceOn
71 Gao, Y., J. He, W. Ling, H. Hu, and F. Liu. 2003. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ. mternationaI 29(5):613-618.
72 He, Q.B., and B.R. Singh. 1993. Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. J. Soil Sci. 44:641-650   DOI   ScienceOn
73 Hees, P.A, Wv., A. M. T. Andersson, and U.S. Lundstrom. 1996. Separation of organic low molecular weight aluminium complexes in soil solution by liquid chromatography. Chemosphere 33:1951-1966   DOI   ScienceOn
74 Hutchinson, J.J., S.D. Young, S.P. McGrath, H.M. West, C.R. Black, and A.J.M. Baker. 2000. Determining uptake of 'non-labile' soil cadmium by Thlaspi caerulescens using isotopic dilution teclmiques. New Phytol. 146(3):453-460   DOI   ScienceOn
75 Oste, L.A, E.J.M. Temminghoff, and W.H.V. Riemsdijk. 2002. Solid-solution partitioning of organic matter in soils as influenced by and increase in pH or Ca concentration. Environ. Sci. Tech. 36:208-214   DOI   ScienceOn
76 Qin, F., X-Q. Shan, and B. Wei. 2004. Effects of low-molecularweight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57(4):253-263   DOI   ScienceOn
77 Sauve, S., W.H. Hendershot, and H.E. Allen. 2000a. Solid-solution partitioning of metals in contaminated soils: dependence on pH,total metal burden, and organic matter. Environ. Sci. Tech. 34(7): 1125-1131   DOI   ScienceOn
78 Smolders, K., and J.M. McLaughlin. 1996. Chloride increases Cd uptake in Swiss chard in a resin-buffered nutrient solution. Soil Sci. Soc. Am. J. 60:1443-1447   DOI   ScienceOn
79 Suter, D., S. Banwart, and W. Stumm. 1991. Dissolution of hydrous iron (Ill) oxides by reductive mechanisms. Langmuir 7:809-813   DOI
80 Drever, J.l., and L.L. Stillings. 1977. The role of organicacids in mineral weathering. Colloids Surf. A 120:167-181   DOI   ScienceOn
81 SSSA 1997. Glossary of soil science terms. Madison, Wl
82 Hammer, D., and A Keller. 2002. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J. Environ. Qual. 31:1561-1569   DOI   ScienceOn
83 Strobel, B.W., I. Bernhoft, and O.K. Borggaard. 1999. Lowmolecular-weight aliphatic carboxylic acids in soil solutions under different vegetations determined by capillary zone electrophoresis. Plant and Soil 212: 115-121   DOI
84 Bingham, F.T., G. Sposito, and J.E. Strong. 1984. Effect of chloride on the availability of cadmium. J. Enviom. Qual. 13(1):71-74
85 Gray, C.W., R.G. McLaren, A.H.C. Roberts, and L.M. Condron. 1999. Cadmium phytoavailability in some New Zealand soils. Aust. J. Soil Res. 37:461-477   DOI   ScienceOn
86 Huang, P.M., and J. Bethelin. 1995. Environmental impact of soil component interaction. Metals, other inorganics and microbial activities. Florida: CRC press. p. 376-384
87 Weggler, K., M.J. McLaughlin, and R.D. Graham. 2004. Effect of chloride in soil solution on the plant availability of biosolid-borne Cadmium. J. Environ. Qual. 33(2):496-504   DOI   ScienceOn
88 Manceau, A., M-C. Boisset, G. Sarret, J-L. Hazemann, M. Mench, P. Cambier, and R. Prost. 1996. Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ. Sci. Tech. 30: 1540-1552   DOI   ScienceOn
89 Jackson, A.P., and B.J. Alloway. 1991. The bioavailability of cadmium to lettuces and cabbages in soils previously treated with sewage sludges. Plant and Soil 132:179-186   DOI
90 McLaughlin, J.M., and E.R.M. Smolders. 1998. Soil-root interface: Physicochemical processes. p. 233-277. In P.M. Huang (ed.) Soil chemistry and ecosystem health. Madison, SSSA
91 Weng, L., E.J.M. Temminghoff, and W.H.V. Riemsdijk. 2001a. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique. Eur. J. Soil Sci. 52:629-639   DOI   ScienceOn
92 Shan, X.Q., and B. Chen. 1993. Evaluation of sequential extraction for speciationof trace metals in model soil containing natural minerals and humic acid. Anal. Chem. 65:802-807   DOI   ScienceOn
93 Temminghoff, E.J.M., S.E.A.T.M.Vd. Zee, and F.A.M.D. Haan. 1997. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Tech. 31:1109-1115   DOI   ScienceOn
94 Turner, D.R. 1995. Metal speciation andbioavailability in aquatic systems. New York: John Wiley & Sons Ltd: Chichester. p 149-203
95 Marschner, H. 1995. Plant-soil relationships. In H. Marschner (ed.) Mineral nutrition of higher plants. London, Academic press
96 Naidu, R., R.D. Harter. 1998. Effect of different organic ligandson cadmium sorption by and extractability from soils. Soil Sci. Soc. Am. J. 62:644-650   DOI   ScienceOn
97 Cances, B., M. Ponthieu, M. Castres-Rouelle, E. Aubry, and M.F. Benedetti. 2003. Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma 113:341-355   DOI   ScienceOn
98 Howard, J.L., and V.W.J. Brink. 1999. Sequential extraction analysis of heavy metals in sediments of variable composition using nitriltriacetic acid to counteract resorption. Environ. Pollut. 106:285-292   DOI   ScienceOn
99 Knight, B.P., AM. Chaudri, S.P. McGrath, and K.E. Giller. 1998. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environ. Pollu. 99(3):293-298   DOI   ScienceOn
100 Salam, A.K., and P.A. Helmke. 1998. The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma 83(3-4):281-291   DOI
101 Hornburg, V., and G. Brummer. 1993. Heavy metals in soils: 1. Experiments on heavy metal mobility. (in German, with English abstract.). A Pflanzenemaehr. Bodenkd 156:467-477   DOI
102 Smolders, E., K. Brans, A. Foldi, and R. Merckx. 1999. Cadmium fixation in soils measured by isotopic dilution. Soil Sci. Soc. Am. J. 63:78-85   DOI   ScienceOn
103 Giesler, R., U.S. Lundstrom, and H. Grip. 1996. Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation. Eur. J. Soil Sci. 47:395-405   DOI   ScienceOn
104 Grossman, J., and P. Udluft. 1991. The extraction of soil water by the suction-cup method: a review. J. Soil Sci. 42:83-93   DOI
105 Harter, R.D., and R. Naidu. 2001. An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci. Soc. Am. J. 65:597-612   DOI   ScienceOn
106 Cieslinski, G., K.C.J. Van Rees, A.M. Szmigielska, G.S.R. Krishnamurti, and P.M. Huang. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and soil 203:109-117   DOI   ScienceOn
107 Feng, M-H., X-Q. Shan, S. Zhang, and B. Wen. 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, $CaCl_{2}$, and $NaNO_{3}$ extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 137(2):231-240   DOI   ScienceOn
108 Fox, T.R., and N.B. Comerford. 1990. Low-Molecular-Weight organic acids in selected forest soils of the south eastern USA. Soil Sci. Soc. Am. J. 54:1139-1144   DOI
109 Sauve, S., M.B. McBride, and W.H. Hendershot. 1998. Soil solution speciation of $Pb^{2+}$: effects of organic matter and pH. Soil Sci. So. Am. J. 62(3):618-621   DOI   ScienceOn
110 Reuter, J. H., and E.M. Purdue. 1977. Importance of heavy metalorganic matter interactions in natural waters. Geochim. Cosmochirn. Acta 41:325-334   DOI   ScienceOn
111 Weng, L., E.J.M. Temminghoff, and W.H.V.Riemsdijk. 2001b. Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Tech. 35(22):4436-4443   DOI   ScienceOn
112 Adriano, D.C., W.W. Wenzel, J Vangronsveld, and N.S. Bolan. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma 122(2-4 SPEC IIS): 121-142   DOI
113 Unger, M.T., and H.E. Allen. 1988. p. 481-488. In M. Astruc, and J.N. Lester, (eds.) Heavy metals in the hydrological cycle. London: Selper
114 McLaughlin, M.J., N.A. Maier, R.L. Correll, M.K. Smart, L.A. Sparrow, and A. McKay. 1999. Prediction of cadmium concentrations in potato tubers (Solanum tuberosum L.) by preplant soil and irrigation water analyses. Austr. J. Soil Res. 37:191-207   DOI   ScienceOn
115 Temminghoff, E.J.M., A.C.C. Piette, R.V. Eck, and W.H.V. Riemsdijk. 2000. Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal. Chim. Acta 417: 149-157   DOI   ScienceOn
116 Tiller, K.G., J.L. Honeysett, and M.P.C. De Vries. 1972. Soil zinc and its uptake by plants: I. isotopic exchange equilibria and the application of tracer techniques. Austr. J. Soil Res. 10:151-164   DOI
117 Pohlman, A.A., and J.G. McColl. 1988. Soluble organics from forest litter and their role in metal dissolution. Soil Sci. Soc. Am. J. 52:265-271   DOI   ScienceOn
118 Tessier, A, P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate tracemetals. Anal. Chem. 51:844-851   DOI   ScienceOn
119 Hamon, R. E., J. Wundke, M. J. McLaughlin, and R. Naidu. 1997. Availability of zinc and cadmium to different plant species. Aust. J. Soil Res. 35:1267-1277   DOI
120 Sauve, S, N. Cook, W.H. Hendershot, and M.B. McBride. 1996. Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environ. Pollut. 94:153-157   DOI   ScienceOn
121 Zutic, V., and W. Stumm: 1984. Effect of organic acids and fluoride on the dissolution kinetics of hydrous alumina. A model study using the rotating disc electrode. Geochim. Cosmochim. Acta 48:1493-1503   DOI   ScienceOn