Browse > Article

Isolation and Identification of Low Molecular Weight Compounds Produced by Bacillus subtilis HJ927 and Their Biocontrol Effect on the Late Blight of Pepper (Capsicum annuum L.)  

Lee, Hyun-Jin (Glucosamin Saccharide Material Laboratory(NRL), Division of Applied Bioscience and Biotechnology, Chonnam National University)
Park, Keun-Hyung (Glucosamin Saccharide Material Laboratory(NRL), Division of Applied Bioscience and Biotechnology, Chonnam National University)
Shim, Jae-Han (Glucosamin Saccharide Material Laboratory(NRL), Division of Applied Bioscience and Biotechnology, Chonnam National University)
Park, Ro-Dong (Glucosamin Saccharide Material Laboratory(NRL), Division of Applied Bioscience and Biotechnology, Chonnam National University)
Kim, Yong-Woong (Glucosamin Saccharide Material Laboratory(NRL), Division of Applied Bioscience and Biotechnology, Chonnam National University)
Hwang-Bo, Hoon (Division of Applied Bioscience and Biotechnology, Institute of Agricultural Science and Technology, APSRC, Chonnam National University)
Cho, Jeung-Yong (Glucosamin Saccharide Material Laboratory(NRL), Division of Applied Bioscience and Biotechnology, Chonnam National University)
Kim, Young-Cheol (Division of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University)
Kim, Kil-Yong (Glucosamin Saccharide Material Laboratory(NRL), Division of Applied Bioscience and Biotechnology, Chonnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.38, no.1, 2005 , pp. 25-31 More about this Journal
Abstract
A soil bacterium, Bacillus subtilis HJ927, exhibiting strong antagonistic property against pathogenic fungi was isolated from pepper fields infested with Phytophthora capsici. Pepper plants inoculated with P. capsici revealed severe root mortality while plants co-inoculated with B. subtilis HJ927 and P. capsici showed drastically reduced root mortality. Low molecular weight substances released by B. subtilis HJ927 mediated the plant protective effect. The anti-fungal compounds released by B. subtilis HJ927 were identified as 3-methylbutyric acid, 2-methylbutyric acid, and methyl 2-hydroxy, 3-phenylpropanoate by high-performance liquid chromatography and gas chromatography-mass spectrometry. In addition to these compounds, B. subtilis HJ927 also produced ${\beta}$-1,3-glucanase, a hydrolytic enzyme implicated in antifungal activity.
Keywords
Bacillus subtilis; Phytophthora capsici; Pepper; Late blight of pepper; Antifungal activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, K. Y., Y. S. Cho, B. K Sohn, R. D. Park, J. H. Shim, S. J. Jung, Y. W. Kim, and K Y. Seong. 2002. Cold-storage of mixed inoculum of Glomus intraradices enhances root colonization, phosphorus status and growth of hot pepper. Plant Soil 238:267-272   DOI   ScienceOn
2 Babad, J., A. Pinsky, R. Turner Graff, and N. Sharon. 1952. An antifungal polypeptide produced by Bacillus subtilis. Nature 170:618-619   DOI   ScienceOn
3 Fogliano, V., A. Ballio, M. Gallo, S. Woo, R. Scala, and M. Lorito. 2002. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act syringistically in biological control. Mol. Plant-Microbe Interact. 15:323-333   DOI   ScienceOn
4 Hwang, B. K, and B. S. Kim. 1995. In-vivo efficacy and in-vitro activity of tubercidine, an antibiotic nucleoside, for control of Phytophthora capsici blight in Capsicium annuum. Pestic. Sci. 44:255-260   DOI   ScienceOn
5 Katz, E., and A. L. Deamain. 1977. The peptide antibiotic of Bacillus: Chemistry, biogenesis, and possible functions. Rev. Bacteriol. 41:449-474
6 Kim, K. D., S. Nemec, and G. Musson. 1997. Control of phytophthora root and crown rot of bell pepper with composts and soil amendments in the greenhouse. Appl. Soil Bcol. 5:169-179   DOI   ScienceOn
7 Liu, X., and B. Huang. 2000. Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. J. Amer. Soc. Holt. Sci. 125:442-447
8 Melent'ev, A. I., G. E. Akutganov., and N. F. Galimzyanova. 2001. The role of chitinase in the antifungal acitivity of Bacillus sp. 739. Microbiol. 70:548-552   DOI   ScienceOn
9 Tang, W. H. 1994. Yield increasing bacteria and biological control of sheath blight of rice. p. 267-273. In M. H. Ryder et al. (ed.) Improving plant productivity with rhizosphere bacteria. Adelaide, CSIRO, Australia
10 Mckeen, C. D., C. C. Reillyd., and P. L. Pusey. 1986. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathol. 76: 136-139   DOI
11 Poxo, M. J., C. Cordier, E. Dumas-Gaudot, S. Gianinazzi, J. M. Barea, and C. Azcon Aguilar. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53:525-534   DOI   ScienceOn
12 Mavingui, P. and T. Heulin. 1994. In vitro chitinase and antifungal activity of a soil, rhizoplane population of Bacillus polymyxa. Soil Biol. Biochem. 26:801-803   DOI   ScienceOn
13 Asante, G. S., and A. L. Neal. 1964. Characterization of fungistatic substances produced by a Bacillus antagonistic to Ceratocystis ulmi. Phytophathol. 54:819-822
14 Weller, D. M., W. J. Howie, and R. J. Cook. 1998. Relationship between in vitro Gaeumannomyces graminis var. tritici and suppression of take all of wheat by fluorescent Pseudomonas. Phytophathol. 78:1094-1100
15 Wei, G., J. W. Klopper, and S. Tuzun. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathol. 81:1508-1512   DOI
16 Hwang, B. K, and D. H. Kim. 1995. Phytophthora blight of pepper and its control in Korea. Plant Dis. 79:221-227   DOI
17 Larena, I., and P. Melgarejo. 1996. Biological control of Monilinia laxa and Fusarium oxysporeum f. sp. lycopersiciby a lytic enzyme-producing Penicillium purpurogenum. Biol. Control 6:361-367   DOI   ScienceOn
18 Fravel, D. R. 1998. Role of antibiosis in the biocontrol of plant diseases. Ann. Rev. Phytopathol. 26:75-91
19 Kobayashi, D. Y., M. Guglielmoni, and B. B. Clarke. 1995. Isolation of the chitinolytic bacteria xantomonas maltophilia and serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biol. Biochem. 27:1479-1487   DOI   ScienceOn
20 Hwang, B. K., S. W. Lim, B. S. Kim, J. Y. Lee, and S. S. Moon. 2001. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylactate from Streptomyces humidus. Appl. Environ. Microbiol. 67:3739-3745   DOI   ScienceOn
21 Singh, P. P., Y. C. Shin, C. S. Park, and Y. R. Chung. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathol. 89:92-99   DOI   ScienceOn
22 Ryder, M. H., Z. Yan, T. E. Terrace, A. E. Rovira, W. Tang, and R. L. Cerrell. 1999. Use of strains of Bacillus isolated in china to suppress take all and rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 31:19-29   DOI   ScienceOn
23 Dumas-Gaudot, E., S. Siezack, B. Dassi, M. J. Pozo, V. Gianinazzi-Pearson, and S. Gianinazzi. 1996. Plant hydrolytic enzymes (chitinase and $\beta$-1,3-glucanase) in root reactions to pathogenic and symbiotic microorganisms. Plant Soil 185:211-221   DOI   ScienceOn
24 Michener, H. D., and N. Snell. 1949. Two antifungal substances from Bacillus subtilis cultures. Arch. Bioehem. 22: 208-214
25 Baker, C. J., J. R. Stavely, C. A. Thomas, M. Sasse, and J. S. MacFall. 1983. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathol. 73: 1148-1152   DOI