Browse > Article

Effect of P Levels in Nutrient solution on the Propagation of Arvuscular Mycorrhizal Funfi in Aeroponics  

Kim, Young-Ju (Division of Environmental and Agricultural Science, Sunchon National University)
Jin, Seo-Yeong (Division of Environmental and Agricultural Science, Sunchon National University)
Cho, Ja-Yong (Department of Medicinal Resources and Hrticulture Development, Namdo Provincial College of Jeonnam)
Kim, Kil-Yong (Division of Applied and Bioscience and Biotechnology College of Agricultural Life Science, Chonnam National University)
Cha, Gyu-Seok (Division of Civil and Environment Technology, Gwangju University)
Soh, Bo-Kyoon (Division of Environmental and Agricultural Science, Sunchon National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.37, no.5, 2004 , pp. 350-355 More about this Journal
Abstract
This experiment was carried out to screen the aeroponically grown host plants suitable for the mass propagation of arbuscular mycorrhizal fungi (AMF) inoculum and clarify the effect of P levels in nutrient solution on the growth of aeroponically grown sweet potato (Ipomoea batatas L.), AMF infection, and mass propagation of mycorrhizal spores, etc. Amount of biomass of host plant became higher, as the P levels in nutrient solutions increased from 5 to 20 M. AMF infection rates in mycorrhizal roots increased in higher P levels in nutrient solution, and decreased in lower parts of mycorrhizal roots by about 18.6-26.0%. About 586 mycorrhizal spores per 1 g fresh root were formed at 16 weeks after inoculation of mycorrhizal inoculum. Total of 830,479 mycorrhizal spores were propagated in each plot.
Keywords
Arbuscular mycorrhizal fungi; AMF; Sweet potato; Phosphorus; Spore propagation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brundrett, M., L. Melville, and L. Peterson. 1994. Practical methods in mycorrhiza research. p. 71-79. Mycologue Publications, Lochside Drive, Canada
2 Douds, Jr. D. D., and N. C. Schenck. 1990. Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimens. Appl. Environ. Microbiol. 56:413-418
3 Hawkins, H. J., and E. George. 1998. Substrate-free culture of mycorrhizal plants: aeroponic, nutrient flow and hydroponic culture. p. 809-826. In A. Varma (ed.) Microbes: For Health, Wealth & Sustainable Environment. Malhotra Publishing House, Kirti Nagar, New Delhi, India
4 Lynch, J., E. Epstein., A. Lauchli, and G. I. Weight. 1990. An automated greenhouse sand culture system suitable for studies of P nutrition. Plant Cell Environ. 13:547-554   DOI
5 McGonigle T. P., M. H. Miller, D. G. Evans, G. L. Fairchild, and J. A. Swan. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115:495-501   DOI   ScienceOn
6 Ojala, J. C., and W. M. Jarrell. 1980. Hydroponic sand culture systems for mycorrhizal research. Plant Soil 57:297-303   DOI
7 Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158-161   DOI
8 Smith, S. E., and D. J. Read. 1997. Mycorrhizal symbiosis. Academic Press, Berkeley, CA, USA
9 Whetten, R., and A. J. Anderson. 1992. Theoretical considerations in the commercial utilization of mycorrhizal fungi. p. 849-879. In D. K. Arora, R. P. Elander and K. G. Mukerji (ed.) Handbook of Applied Mycology. Vol. 4. Marcel Dekker Inc., New York, NY, USA
10 Conway, C., and D. J. Bagyaraj. 1984. The effect of VA mycorrhizae on plant growth. p. 120-130. In S. L. Powell and D. J. Bagyaraj (ed.) VA mycorrhiza. CRC Press, Boca Raton, FL, U.S.A
11 Schreiner, R. P., K. L. Mihara, H. McDaniel, and G. J. Bethlenfalvay. 1997. Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199-209   DOI   ScienceOn
12 Jarstfer, A. G., and D. M. Sylvia. 1994. Aeroponic culture of VAM fungi. p. 427-441. In A. K. Varma and B. Hock (ed.) Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. Springer-Verlag, Berlin, Germany
13 Brundrett, M. C., Y. Piche, and R. L. Peterson. 1984. A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can. J. Bot. 62:2128-2134   DOI
14 Thompson, J. P. 1986. Soilless culture of vesicular-arbuscular mycorrhizae of cereals: effects of nutrient concentration and nitrogen source. Can. J. Bot. 64:2282-2294   DOI
15 Marx, D. H., and D. S. Kenney. 1982. Production of ectomycorrhizal fungus inoculum. p. 131-146. In N. C. Schenck (ed.) Methods and Principles of Mycorrhizal Research. American Phytopathological Society, St. Paul, MN, USA
16 Azcon-Aguilar, C., and J. M. Barea. 1997. Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci. Hortic. 68:1-24   DOI   ScienceOn
17 Cho, J. Y., B. K. Sohn, H. Y. Lee, and S. J. Chung. 2000. In vitro propagation of arbuscular mycorrhizal fungi using Ri t-DNA transformed carrot roots. Kor. Hortic. Sci. Technol. 18:802-807
18 Hoagland, D. R., and D. I. Arnon. 1938. The water-culture method for growing plants without soil. Agricultural Experiment Station Circular 347. University of California, Berkely, CA, USA
19 Hung, L. L., and D. M. Sylvia. 1988. Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl. Environ. Microbiol. 54:353-357