Browse > Article

Screening of Wintering Cd Hyperaccumulators  

Lee, Han-Na (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University)
Ok, Yong-Sik (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University)
Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.37, no.1, 2004 , pp. 14-18 More about this Journal
Abstract
This study was aimed at searching for the wintering Cd hyperaccumulators as the life cycle of existing hyperaccumulators were mostly from spring to early winter season. The wintering hyperaccumulators can be effective for saving time loss during the winter. A pot experiment was conducted to search for hyperaccumulators through out the native wintering plants. Seven species of native wintering plants were applied; Bromus catharticus, Oxatis corniculata, Festuca rubra, Thlaspi. arvense, Agastache rrgosa, Viola seoulensis, and Patrinia rapestris. Among them, Bromus catharticus and Thlaspi arvense were selected as Cd hyperaccumulators; the two plants accumulated 112.35 and $86.69mg\;kg^{-1}$ of Cd in the shoot, respectively.
Keywords
Bromus catharticus; Cadmium; Hyperaccumulator; Phytoremediation; Thlaspi arvense;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Blaylock, M. J., and J. W. Huang. 2000. Phytoremediation of Toxic Metals. p. 53-70. In I. Raskin and B. D. Ensley (ed.) Using Plants to Clean Up the Environment - Phytoextraction of Metals. John Wiley & Sons. Inc. New York, USA
2 Brown, S. L., R. L. Chaney, J. S. Angel, and A. M. J. Baker. 1995.Zinc and cadmium uptake by hyperaccumulator Thlaspi caerutescens grown in nutrient solution. Soil Sci. Soc. Am. J. 59:125-133   DOI   ScienceOn
3 Jung, K. C., B. J. Kim, and S. G. Han. 1993. Survey on heavy metals contents in native plant near old zinc-mining sites. Korean J. Environ. Agric. 12:105-111
4 Kang, B. H., S. I. Shim, S. G. Lee, K. H. Kim, and I. M. Chung. 1998b. Evaluation of Ambrosia artemisiifolia var. elatior, Ambrosia trifida, Rumex crispus for phytoremediation of Cu and Cd contaminated soil. Korean J. Weed Sci. 18:262-267
5 Neumann, G., and E. Martinoia. 2002. duster roots - an underground adaptation for survival in extreme environments. TKnds Plant Sci. 7:162-167   DOI   ScienceOn
6 Perronnet, K., C. Schwartz, and J. L. Morel. 2003. Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant Soil 249:19-25   DOI   ScienceOn
7 Wong, M. H. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphem 50:775-780   DOI   PUBMED   ScienceOn
8 Lee, Y. N. 1996. Flora of Korea. Kyohaksa, Seoul, Konsa
9 Schwartz, C., J. L. Morel, S. Saumier, S. N. Whitting, and A. J. M. Baker. 1999. Root development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 208:103-115   DOI   ScienceOn
10 Kim, J. G., S. Lim, S. H. Lee, Y. M. Yoon, C. H. Lee, and C. Y.Jeong. 1999. Evaluation of heavy metal pollution and plant surveyaround inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils. Korean J. Environ. Agric.18:28-34
11 Raskin, I., R. D. Smith, and D. E. Salt. 1997. Phytoremediadon of metals: using plants to remove pollutants. Curr. Opin. Biotech. 8:221-226   DOI   ScienceOn
12 Cunningham, S. D., T. A. Anderson, A. P. Schuwab, and F. C. Hsu. 1996. Phytoremediation of soils contaminated with organic pollutants. Adv. Agron. 56:55-114   DOI
13 McGrath, S. P., K. K. Zhao, and E. Lombi. 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207-214   DOI   ScienceOn
14 Kang, B. H., S. I. Shim, and S. G. Lee. 1996. Application of weed species as the diagnostic indicator plants of environmental pollution. Korean J. Environ. Agric. 15:46-69
15 Kang, B. H., S. I. Shim, S. G. Lee, K. H. Kim, and I. M. Jeong. 1998a. Study on the potential of phytoremediation using wild plants for heavy metal pollution. Korean J. Environ. Agric. 17:312-318
16 McGrath, S. P. 1998. Phytoextraction for soil remediation. p. 261-287. In R. R. Brooks (ed.) Plants that hyperaccumulate heavy metals. CAB International, Wallingfoid, UK
17 Brooks, R. R., M. F. Chambers, L. J. Nicks, and B. H. Robinson 1998. Phytomining. Trends Plant Sci. 3:359-362   DOI   ScienceOn
18 Ok, Y. S., S. H. Kim, H. Lee, S. Lim, and J. G. Kim. 2003.Feasibility study of phytoremediation for metal-contaminated mining area. Koiea J. Soil Sci. Fert 36(5):323-332
19 Salt, D. E., R. D. Smith, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant. Phys. 49:643-668   DOI   ScienceOn
20 Lee, S. H. 1997. Heavy metal content of plants, soils in Younhwa mining area and evaluation of Artemisia princepts as a pioneer species for soil remediation. Thesis of the Degree of Master. Korea University, Seoul, Korea
21 Nedelkoska, T. V., and P. M. Doran. 2000. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner. Eng. 13:549-561   DOI   ScienceOn
22 Arahou, M., and H. G. Dien. 1997. Iron deficiency induces cluster (Proteoid) root formation in Casuarina, glauca. Plant Soil. 196:71-79   DOI   ScienceOn
23 Mejare, M., and L. Bulow. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 13:67-73