Browse > Article
http://dx.doi.org/10.1186/s41610-018-0065-4

Effects of water levels and soil nutrients on the growth of Iris laevigata seedlings  

Lee, Eun Hye (Department of Biology Education, Seoul National University)
Lee, Bo Eun (Department of Biology Education, Seoul National University)
Kim, Jae Geun (Department of Biology Education, Seoul National University)
Publication Information
Journal of Ecology and Environment / v.42, no.1, 2018 , pp. 43-49 More about this Journal
Abstract
Iris laevigata is geographically restricted and legally protected in Korea. In this study, a mesocosm study was conducted to examine the effects of environmental conditions such as water levels and soil nutrient conditions on the growth and survival of I. laevigata seedlings. Complete submergence lowered the total number of leaves, biomass, and survival rates. A rise in soil nutrients increased overall seedling growth and increased tiller numbers via the promotion of asexual reproduction. Also, we found that the lowest measured values of seedlings are associated with the most stressful condition due to the interaction of low soil nutrients and high water levels. I. laevigata seedlings, however, are distributed in low-nutrient habitats such as floating mat, even though they do not grow well under these conditions. This study suggests that I. laevigata does not prefer low-nutrient condition but choose another benefit such as low competition. Also, the water level must be lower than the seedling height for effective growth and management of I. laevigata.
Keywords
Endangered species; Fundamental niche; Seedling establishment; Soil nutrients; Water depth;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yabuya, T. (1991). Chromosome associations and crossability with Iris ensata Thunb. in induced amphidiploids of I. laevigata Fisch.$\times$ I. ensata. Euphytica, 55(1), 85-90.   DOI
2 Hong, M. G., Son, C. Y., & Kim, J. G. (2014). Effects of interspecific competition on the growth and competitiveness of five emergent macrophytes in a constructed lentic wetland. Paddy Water Environment, 12(1), S193-S202.
3 Sauter, M. (2013). Root responses to flooding. Current Opinion in Plant Biology, 16(3), 282-286.   DOI
4 Casanova, M. T., & Brock, M. A. (2000). How do depth, duration, and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147(2), 237-250.   DOI
5 Chapin, F. S., Vitousek, P. M., & Van Cleve, K. (1986). The nature of nutrient limitation in plant communities. The American Naturalist, 127(1), 48-58.   DOI
6 Clarkson, D. T. (1967). Phosphorus supply and growth rate in species of Agrostis L. Journal of Ecology, 55, 111-118.   DOI
7 Colmer, T. D., & Pedersen, O. (2008). Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve $CO_2$ and $O_2$ exchange. New Phytologist, 177(4), 918-926.   DOI
8 Drury, W. H. (1974). Rare species. Biological Conservation, 6(3), 162-169.   DOI
9 Engin, A., Kandemir, N., Senel, G., & Ozkan, M. (1998). An autecological study on Iris pseudacorus L. (Iridaceae). Turkish Journal of Botany, 22(5), 335-340.
10 Fraser, L. H., & Karnezis, J. P. (2005). A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands, 25(3), 520-530.   DOI
11 Gaston, K. J., & Kunin, W. E. (1997). Rare-common differences: an overview. In W. E. Kunin & K. Gaston (Eds.), The biology of rarity (pp. 12-29). Dordrecht: Springer.
12 Grime, J. P. (1979). Plant strategies and vegetation processes. Chichester: Wiley.
13 Grime, J. P., & Hunt, R. (1975). Relative growth-rate: its range and adaptive significance in a local flora. Journal of Ecology, 63, 393-422.   DOI
14 Jacobs, J., Graves, M., & Mangold, J. (2010). Biology, ecology and management of yellowflag iris (Iris pseudacorus L.). Montana: United States Department of Agriculture, Natural Resources Conservation Service.
15 Kim, D. H., Kim, H. T., & Kim, J. G. (2013). Effects of water level and soil type on the survival and growth of Persicaria thunbergii during early growth stages. Ecological Engineering, 61, 90-93.   DOI
16 Kim, H. T., Lee, G. M., & Kim, J. G. (2013). The ecological characteristics and conservation counterplan of Menyanthes trifoliata habitat in floating mat in Korean east coastal lagoon, Sunyoodam. Journal of Wetlands Research, 15(1), 25-34 (in Korean).   DOI
17 Kim, S. H., Nam, J. M., & Kim, J. G. (2017). Establishment strategy of a rare wetland species Sparganium erectum in Korea. Journal of Ecology and Environment, 41(1), 27.   DOI
18 Lacoul, P., & Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews, 14(2), 89-136.   DOI
19 Korea Forest Service and Korea National Arboretum. (2008). Rare plants data book in Korea. Pocheon: Geobook.
20 Kwon, G. J., Lee, B. A., Nam, J. M., & Kim, J. G. (2007). The relationship of vegetation to environmental factors in Wangsuk stream and Gwarim reservoir in Korea: II. Soil environments. Ecological Research, 22(1), 75-86.   DOI
21 Lee, B. E., & Kim, J. G. (2014). Habitat environmental characteristics of vulnerable plant species Iris laevigata and I. setosa in Korean east coastal lagoons. Incheon: The 4th International Conference of Urban Biodiversity and Design.
22 Lee, G. M. (2012). Effects of habitat substrates and companion plants on the growth of Menyanthes trifoliate L. in Korean: Seoul National University, Master's Thesis.
23 Mahoney, J. M., & Rood, S. B. (1998). Streamflow requirements for cottonwood seedling recruitment-an integrative model. Wetlands, 18(4), 634-645.   DOI
24 Ministry of Environment. (2012). Law of wild animal and plants protection. Seoul: Ministry of Environment.
25 Nash, H., & Stroupe, S. (2003). Complete guide to water garden plants. New York: Sterling Publishing Company.
26 National Institute of Biological Resources. (2012). Flora of hot-spot areas in Korea (I). Incheon: National Institute of Biological Resources.
27 Nicol, J. M., & Ganf, G. G. (2000). Water regimes, seedling recruitment and establishment in three wetland plant species. Marine and Freshwater Research, 51(4), 305-309.   DOI
28 Rodionenko, G. I. (1987). The genus Iris L.: questions of morphology, biology, evolution and systematics. London: British Iris Society.
29 Orians, G. H., & Soule, M. E. (2001). Whither conservation biology research? Conservation Biology, 15(4), 1187-1188.   DOI
30 Pratt, R. B., Jacobsen, A. L., Mohla, R., Ewers, F. W., & Davis, S. D. (2008). Linkage between water stress tolerance and life history type in seedlings of nine chaparral species (Rhamnaceae). Journal of Ecology, 96(6), 1252-1265.   DOI
31 Seabloom, E. W., van der Valk, A. G., & Moloney, K. A. (1998). The role of water depth and soil temperature in determining initial composition of prairie wetland coenoclines. Plant Ecology, 138(2), 203-216.   DOI
32 Shin, C. J., Nam, J. M., & Kim, J. G. (2015). Floating mat as a habitat of Cicuta virosa, a vulnerable hydrophyte. Landscape and Ecological Engineering, 11(1), 111-117.   DOI
33 Striker, G. G. (2012). Flooding stress on plants: anatomical, morphological and physiological responses. In J. K. Mworia (Ed.), Botany (pp. 1-28) InTech.
34 Sun, M. Z., Li, M. R., Shi, F. X., Li, L., Liu, Y., Li, L. F., & Xiao, H. X. (2012). Genomic and EST-derived microsatellite markers for Iris laevigata (Iridaceae) and other congeneric species. American Journal of Botany, 99(7), e286-e288.   DOI
35 Yabuya, T. (1987). High-performance liquid chromatographic analysis of anthocyanins in induced amphidiploids of Iris laevigata Fisch.$\times$ I. ensata Thunb. Euphytica, 36(2), 381-387.   DOI