Browse > Article
http://dx.doi.org/10.1186/s41610-016-0009-9

Short-term effects of elevated CO2 on periphyton community in an artificially constructed channel  

Park, Hye-Jin (Department of Environmental Science, Konkuk University)
Kwon, Dae-Ryul (National Institute of Environmental Research)
Kim, Baik-Ho (Department of Life Science, Hanyang University)
Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
Publication Information
Journal of Ecology and Environment / v.40, no.1, 2016 , pp. 12-19 More about this Journal
Abstract
Background: Direct impact of inorganic carbon (i.e., carbon dioxide ($CO_2$)) on the periphyton community is important to understand how and to what extent atmospheric conditions can affect the structure and dynamics of these communities in lotic systems. We investigated the influence of elevated $CO_2$ concentration on the periphyton community in the artificially constructed channels during the winter period. The channels made of acrylic paneling were continuously supplied with surface water discharged from a small reservoir, which was supported with ground water, at a flow rate of 5 L/min, and water temperature ranging $4-5^{\circ}C$. The effects of elevated $CO_2$ concentrations (790 ppm) were evaluated in comparison with the control (395 ppm $CO_2$) by analyzing pH, water carbon content and nutrients in water, periphyton composition and biomass, chlorophyll-a, ash-free dry-matter at 2-day intervals for 10 days. Results: After the addition of $CO_2$, significant decreases of pH, $NH_3-N$, and $PO_4-P$ (p < 0.05) and increases of chlorophyll-a, ash-free dry-matter, and the cell density of periphyton (p < 0.01) were observed, whereas the species composition of periphyton and water carbon content did not change. Conclusions: These results suggest that elevated $CO_2$ in flowing water system with low temperature could facilitate the growth of periphyton resulting in biomass increase, which could further influence water quality and the consumers throughout the food web.
Keywords
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hein, M., & Sand-Jensen, K. (1997). $CO_2$ increases oceanic primary production. Nature, 388, 526-527.
2 Hillebrand, H., & Sommer, U. (2000). Diversity of benthic microalgae in response to colonization time and eutrophication. Aquatic Botany, 67, 221-236.   DOI
3 Hopkinson, B. M., Dupont, C. L., Allen, A. E., & Morel, F. M. M. (2011). Efficiency of the $CO_2$-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences of the United States of America, 108, 3830-3837.   DOI
4 Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A. (2001). Climate change 2001: the scientific basis (Intergovernmental Panel on Climate Change). Cambridge: Cambridge University Press.
5 IPCC. (2007). Fourth assessment report: climate change 2007 (AR4). http://www.ipcc.ch/report/ar4/
6 Johnson, V. R., Brownlee, C., Rickaby, R. E. M., Graziano, M., Milazzo, M., & Hall-Spencer, J. M. (2011). Responses of marine benthic microalgae to elevated $CO_2$. Marine Biology, 160, 1813-1824.
7 Krammer, K. and H. Lange-Bertalot. (1991a). Susswasserflora von Mitteleuropa, Band 2/3: Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany. 576pp.
8 Krammer, K. and H. Lange-Bertalot. (1991b). Susswasserflora von Mitteleuropa, Band 2/4: Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany. 437pp.
9 Krammer, K. and H. Lange-Bertalot. (2007a). Susswasserflora von Mitteleuropa, Band 2/1: Bacillariophyceae 1. Teil: Naviculaceae (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany.
10 Krammer, K. and H. Lange-Bertalot. (2007b). Susswasserflora von Mitteleuropa, Band 2/2: Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany.
11 Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Griger, J., Klepetar, J., Prasil, O., & Berman-Frank, I. (2007). Elevated $CO_2$ enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Global Change Biology, 13, 531-538.   DOI
12 Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103, 15729-15735.   DOI
13 Min, Y. H., Kang, S. W., Lee, H. S., & Chung, N. H. (2011). Relationship between concentration of phosphorus, turbidity, and pH in water and soil under aerobic and anaerobic conditions. Journal of Applied Biological Chemistry, 54, 225-229.   DOI
14 Patrick, R., & Reimer, C. W. (1966). The diatoms of the United States, exclusive of Alaska and Hawaii (Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae, Vol. 1). Philadelphia: Academy of natural sciences of Philadelphia.
15 Ross, R. M., Krise, W. F., Redell, L. A., & Bennett, R. M. (2001). Effects of dissolved carbon dioxide on the physiology and behavior of fish in artificial streams. Environmental Toxicology, 16, 84-95.   DOI
16 Rost, B., Riebesell, U., & Burkhardt, S. (2003). Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography, 48, 55-67.   DOI
17 Sayre, R. (2010). Microalgae: the potential for carbon capture. BioScience, 60(9), 722-727. doi:10.1525/bio.2010.60.9.9.   DOI
18 Schippers, P., Lurling, M., & Scheffer, M. (2004). Increase of atmospheric $CO_2$ promotes phytoplankton productivity. Ecology Letters, 7, 446-451.   DOI
19 Suffrian, K., Simonelli, P., Nejstgaard, J. C., Putzeys, S., Carotenuto, Y., & Antia, A. N. (2008). Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased $CO_2$ levels. Biogeosciences, 5, 1145-1156.   DOI
20 Tortell, P. D., Rau, G. H., & Morel, F. M. M. (2000). Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnology and Oceanography, 45, 1485-1500.   DOI
21 Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O., Riesselman, C., Dunbar, R. B., Sedwick, P., & DiTullio, G. R. (2008). $CO_2$ sensitivity of southern ocean phytoplankton. Geophysical Research Letters, 35, L04605. doi:10.1029/2007GL032583.   DOI
22 Trimborn, S., Wolf-Gladrow, D., Ritcher, K. L., & Rost, B. (2009). The effect of $pCO_2$ on carbon acquisition and intracellular assimilation in four marine diatoms. Journal of Experimental Marine Biology and Ecology, 376, 26-36.   DOI
23 Tuchman, N. C., Wetzel, R. G., Rier, S. T., Wahtera, K. A., & Teeri, J. A. (2002). Elevated atmospheric $CO_2$ lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biology, 8, 163-170.   DOI
24 Villeneuve, A., Montuelle, B., & Bouchez, A. (2010). Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquatic Sciences, 72, 33-44.   DOI
25 APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association.
26 Battisti, D. S., & Naylor, R. L. (2008). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240-244.
27 Biggs, B. J. F., Stevenson, R. J., & Lowe, R. L. (1998). A habitat matrix conceptual model for stream periphyton. Archiv fur Hydrobiologie, 143, 21-56.   DOI
28 Biswas, H., CROS, A., Yadav, K., Ramana, V. V., Prasad, V. R., Acharyya, T., & Babu, P. V. R. (2011). The response of a natural phytoplankton community from the Godavari River Estuary to increasing $CO_2$ concentration during the pre-monsoon period. Journal of Experimental Marine Biology and Ecology, 407, 284-293.   DOI
29 Chung, J. (1993). Illustration of the freshwater algae of Korea. Seoul: Academy Publishing Company.
30 Falkowski, P.G. and J.A. Raven. (2007). Aquatic photosynthesis. NJ: Princeton University Press.
31 Finlay, J. C. (2003). Controls of stream water dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry, 62, 231-252.   DOI
32 Finlay, J. C. (2004). Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and Oceanography, 49, 850-861.   DOI
33 Finlay, J. C., Power, M. E., & Cabana, G. (1999). Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. Limnology and Oceanography, 44, 1198-1203.   DOI
34 Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., & Hutchins, D. A. (2007). Effects of increased temperature and $CO_2$ on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). Journal of Phycology, 43, 485-496.   DOI
35 Giordano, M., Beardall, J., & Raven, J. A. (2005). $CO_2$ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology, 56, 99-131.   DOI
36 Goldman, J. C. (1999). Inorganic carbon availability and the growth of large marine diatoms. Marine Ecology Progress Series, 180, 81-91.   DOI
37 Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D., & Buia, M. C. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature, 454(96), 99.
38 Hargrave, C. W., Gray, K. P., & Rosado, S. K. (2009). Potential effects of elevated atmospheric carbon dioxide on benthic autotrophs and consumers in stream ecosystems: a test using experimental stream mesocosms. Global Change Biology, 15, 2779-2790.   DOI