Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.5.347

A Study on Thermal Design of Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen  

SOHN, SANGHO (Department of Thermal System, Energy Systems Research Division, Korea Institute of Machinery and Materials)
CHOI, BYUNG-IL (Department of Plant Technology, Energy Systems Research Division, Korea Institute of Machinery and Materials)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.5, 2021 , pp. 347-355 More about this Journal
Abstract
This paper is a study on the thermal design of printed circuit heat exchanger (PCHE) to supply cryogenic high pressure liquid hydrogen stored from hydrogen liquefaction process by using computational fluid dynamics (CFD). This PCHE should be thermally designed to raise the temperature of cryogenic liquid hydrogen to a desired temperature and also to be anti-icing to avoid any local freezing in hot channel. This research presents the effect of inlet velocity and inlet temperature of hydrogen, and the effect of flow configurations of co/counter-flow on thermal design of PCHE heat exchanger based on various CFD simulation analysis.
Keywords
Liquid hydrogen; Printed circuit heat exchanger; Thermal design; Anti-icing; Flow configuration; Computational flow dynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 "ANSYS fluent theory guide", ANSYS, 2013.
2 T. Kim, B. I. Choi, Y. S. Han, and K. H Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pulot platn with a small capacity", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.   DOI
3 B. Sun, D. Wadnerkar, R. P. Utikar, M. Tade, N. Kavanagh, S. Faka, G. M. Evans, and V. K. Pareek, "Modeling of cryogenic liquefied natural gas ambient air vaporizers", Ind. Eng. Chem. Res, Vol. 57, No. 28, 2018, pp. 9281-9291, doi: https://doi.org/10.1021/acs.iecr.8b01226.   DOI
4 F. Huerta and V. Vesovic, "CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks", Int. J. heat and mass transfer, Vol. 176, 2021, pp. 121419, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121419.   DOI
5 "Fuelingprotocols for light duty gaseous hydrogen surface vehicles J2601_202005", SAE MOBILUS, 2020, Retrieved from https://www.sae.org/standards/content/j2601_202005/.
6 D. C. Lee, H. Afrianto, H. S. Chung, and H. M. Jeong, "Numerical analysis of LNG vaporizer heat transfer characteristic in LNG fuel ship", The Korean Society of Marine Eng, Vol. 37, No. 1, 2013, pp. 22-28, doi: https://doi.org/10.5916/jkosme.2013.37.1.22.   DOI
7 Q. Wilhelmsen, D. Berstad, A. Aasen, and P. Neksa, "Reducing the exergy destruction in the cryogenic heat exchangers of hydro liquefaction processes", Int. J. hydrogen energy, Vol. 43, No. 10, 2018, pp.5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.   DOI
8 J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E.W. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", J. Phys. Chem. Ref. Data, Vol. 38, No. 721, 2009, doi: https://doi.org/10.1063/1.3160306.   DOI
9 P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion durting liquefaction", Chem. Eng. Technol, Vol. 42, No. 3 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.   DOI
10 S. Beak, J. H. Kim, S. Jeong, and J. Jung, "Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction", Cryogenics, Vol. 52, No. 7-9, 2012, pp. 366-374, doi: https://doi.org/10.1016/j.cryogenics.2012.03.001.   DOI
11 D. Popov, K. Fikiin, B. Stankov, G. Alvarez, M. Y. Idrissi, A. Damas, J. Evans, and T. Brown, "Cryogenic heat exchangers for process cooling and renewable energy storage: a review", App. Thermal Eng, Vol. 153, 2019, pp. 275-290, doi: https://doi.org/10.1016/j.applthermaleng.2019.02.106.   DOI
12 M. Ichard, Q. R. Hansen, P. Middha, and D. Willoughby, "CFD computations of liquid hydrogen releases", Int. J. hyrogen energy, Vol 37, No. 22, 2012, pp. 17380-17389, doi: https://doi.org/10.1016/j.ijhydene.2012.05.145.   DOI
13 "Standard test method for freezing point of aqueous engine coolants", ASTM D1177-17, 2017, Retrieved from https://www.astm.org/Standards/D1177.htm.