Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.1.8

Intermittent Operation Induced Deactivation Mechanism for HER of Ni-Zn-Fe Electrode for Alkaline Electrolysis  

HAN, JIMIN (Korea Institute of Energy Research)
KIM, JONGWON (Korea Institute of Energy Research)
BAE, KIKWANG (Korea Institute of Energy Research)
PARK, CHUSIK (Korea Institute of Energy Research)
JEONG, SEONGUK (Korea Institute of Energy Research)
JUNG, KWANGJIN (Korea Institute of Energy Research)
KANG, KYOUNGSOO (Korea Institute of Energy Research)
KIM, YOUNGHO (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Abstract
In this study, we investigated the deactivation characteristics of Ni-Zn-Fe electrodes due to intermittent operation in alkaline water electrolysis. To find suitable method to accelerate deactivation of electrode, the accelerated stress-test (AST) which repeated on/off step was performed with constant current/voltage control. The AST under constant voltage control is suitable to deactivate electrode so it were selected to investigate deactivation of electrode. The AST which repeated on/off step in range of -1.3 V and 0 V was performed and the relationship between oxidation current and electrode deactivation in the off step was investigate. As results, it was confirmed that the nickel and zinc on electrode surface were oxidized due to anodic current which occurred at off step.
Keywords
Alkaline water electrolysis; Accelerated stress-test; Ni-Zn-Fe alloy; Deactivation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Khor, P. Leung, M. R. Mohamed, C. Flox, Q. Xu, L. An, R. G. A. Wills, J. R. Morante, and A. A. Shah, "Review of zinc-based hybrid flow batteries: from fundamentals to applications", Material Today Energy, Vol. 8, 2018, pp. 80-108, doi: https://doi.org/10.1016/j.mtener.2017.12.012.   DOI
2 S. M. Oh, "Electrochemistry", 2nd ed. Free Academy, Korea, 2014, pp. 1-26, 145-164.
3 D. Chade, L. Berlouis, D. Infield, P. T. Nielsen, and T. Mathiesen, "Deactivation mechanisms of atmospheric plasma spraying raney nickel electrodes", J. Electrochem. Soc., Vol. 163, No. 3, 2016, pp. 308-317, doi: https://doi.org/10.1149/2.0091605jes.
4 L. F. Huang, M. J. Hutchison, R. J. Santucci, J. R. Scully, and J. M. Rondinelli, "Improved electrochemical phase diagrams from theory and experiment: the Ni−water system and its complex compounds", J. Phys. Chem., Vol. 121, No. 18, 2017, pp. 9782-9789, doi: https://doi.org/10.1021/acs.jpcc.7b02771.
5 C. Li and S. Liu, "Preparation and characterization of Ni $(OH)_2$ and NiO mesoporous nanosheets, J. Nanomaterials", Vol. 2012, 2012, pp. 1-6, doi: https://doi.org/10.1155/2012/648012.
6 M. Cao, X. He, J. Chen, and C. Hu, "Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries", Crystal Growth & Design, Vol. 7, No. 1, 2007, pp. 170-174, doi: https://doi.org/10.1021/cg060524w.   DOI
7 J. Tientong, S. Garcia, C. R. thurber, and T. D. Golden, "Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction", J. Nano., Vol. 2014, 2014, pp. 1-6, doi: https://doi.org/10.1155/2014/193162.   DOI
8 K. AL-Rashedi, M. Farooqui, and G. Rabbani, "Nickel oxide thin film synthesis by sol-gel method on glass substrates", Int. J. of Universal Print, Vol. 4, No. 8, 2018, pp. 508-516. Retrieved from http://www.universalprint.org/wp-content/uploads/2018/03/ACTRA-2018-078.pdf.
9 D. Jia, Q. Ren, L. Sheng, F. Li, G. Xie, and Y. Miao, "Preparation and characterization of multifunctional polypyrrole-Au coated NiO nanocomposites and study of their electrocatalysis toward several important bio-thiols", Sens. Actuators B Chem., Vol. 160, No. 1, 2011, pp. 168-173, doi:https://doi.org/10.1016/j.snb.2011.07.028.   DOI
10 C. C. Hu and H. Teng, "Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting", J. Catal., Vol. 272, No. 1, 2010, pp. 1-8, doi: https://doi.org/10.1016/j.jcat.2010.03.020.   DOI
11 F. Safizadeh, E. Ghali, and G. Houlachi, "Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - a review", Int. J. Hydrogen Energy, Vol. 40, No. 1, 2015, pp. 256-274, doi: https://doi.org/10.1016/j.ijhydene.2014.10.109.   DOI
12 Y. Xiao, Y. Liu, Z. Tang, L. Wu, Y. Zeng, Y. Xu, and Y. He, "Porous Ni-Cr-Fe alloys as cathode materials for the hydrogen evolution reaction", RSC Advances, Vol. 6, No. 56, 2016, pp. 51096-51105, doi: https://doi.org/10.1039/C6RA07316F.   DOI
13 J. Divisek, J. Mergel, and H. Schmitz, "Advanced water electrolysis and catalyst stability under discontinuous operation", Int. J. Hydrogen Energy, Vol. 15, No. 2, 1990, pp. 105-114, doi: https://doi.org/10.1016/0360-3199(90)90032-T.   DOI
14 T. N. Veziroglu and S. N. Sahin, "21st century's energy: hydrogen energy system", Energy Conv. Manag., Vol. 49, No. 7, 2008, pp. 1820-1831, doi: https://doi.org/10.1016/j.enconman.2007.08.015.   DOI
15 T. H. Lee, "Water electrolyzer technical overview and outlook", J. of the Electric World, Vol. 459, 2015, pp. 14-17. Retrieved from http://www.kea.kr/elec_journal/2015_3/2.pdf.
16 A. E. Mauer, D. W. Kirk, and S. J. Thorpe, "The role of iron in the prevention of nickel electrode deactivation in alkaline electrolysis", Electrochim. Acta, Vol. 52, No. 11, 2007, pp. 3505-3509, doi: https://doi.org/10.1016/j.electacta.2006.10.037.   DOI
17 H. C. Lim, "Use of hydrogen energy for power storage & outlook", J. of Electrical World, Vol. 465, 2015, pp. 35-41. Retrieved from http://www.kea.kr/elec_journal/2015_9/6.pdf.
18 J. Divisek, H. Schmitz, and J. Balej, "Ni and Mo coatings as hydrogen cathodes", J. Appl. Electrochem., Vol. 19, No. 4, 1989, pp. 519-530, doi: https://doi.org/10.1007/BF01022108.   DOI
19 W. Hu, "Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis", Int. J. Hydrogen Energy, Vol. 25, No. 2, 2000, pp. 111-118, doi:https://doi.org/10.1016/S0360-3199(99)00024-5.   DOI
20 J. Divisek, H. Schmitz, and B. Steffen, "Electrocatalyst materials for hydrogen evolution", Electrochem. Acta., Vol. 39, No. 11-12, 1994, pp. 1723-1731, doi: https://doi.org/10.1016/0013-4686(94)85157-3.   DOI
21 Y. Hu and D. A. Scherson, "Potential-induced plastic deformations of nickel hydrous electrodes in alkaline electrolytes: an in situ atomic force microscopy study", J. Phys. Chem., Vol. 101, No. 27, 1997, pp, 5370-5376, doi:https://doi.org/10.1021/jp970399m.   DOI
22 D. S. Hall, C. Bock and B. R. MacDougall, "Surface layers in alkaline media: nickel hydrides on metallic nickel electrodes", ECS Transactions, Vol. 50, No. 31, 2013, pp. 165-179, doi: https://doi.org/10.1149/05031.0165ecst.
23 D. S. Hall, C. Bock and B. R. MacDougall, "The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution", J. Electrochem. Soc., Vol. 160, No. 3, 2013, pp. 235-243, doi: https://doi.org/10.1149/2.026303jes.
24 A. R. Mainar, L. C. Colmenares, J. A. Blazquez, and I. Urdampilleta, "A brief overview of secondary zinc anode development: the key of improving zinc‐based energy storage systems", J. Energy Res., Vol. 42, No. 3, 2018, pp. 903-918, doi: https://doi.org/10.1002/er.3822.   DOI
25 S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, and D. Johnson, "In situ studies of the oxidation of nickel electrodes in alkaline solution", J. Electroanal. Chem., Vol. 587, No. 1, 2006, pp. 172-181, doi: https://doi.org/10.1016/j.jelechem.2005.11.013.   DOI
26 A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. de Meatza, A. Kvasha, A. Guerfi, and J. A. Blazquez, "Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview", Int. J. Energy Res., Vol. 40, 2016, pp. 1032-1049, doi: https://doi.org/10.1002/er.3499.   DOI