Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.6.523

Effect of Ionomer Content on the Anode Catalyst Layers of PEM Fuel Cells  

PAK, BEOMJUN (Fuel Cell laboratory, Korea Institute of Energy Research (KIER))
LEE, SEONHO (Fuel Cell laboratory, Korea Institute of Energy Research (KIER))
WOO, SEUNGHEE (Fuel Cell laboratory, Korea Institute of Energy Research (KIER))
PARK, SEOK-HEE (Fuel Cell laboratory, Korea Institute of Energy Research (KIER))
JUNG, NAMGEE (Energy Science and Technology, Chungnam National University)
YIM, SUNG-DAE (Fuel Cell laboratory, Korea Institute of Energy Research (KIER))
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.6, 2019 , pp. 523-530 More about this Journal
Abstract
For the low-Pt electrodes for polymer electrolyte fuel cells (PEMFCs), the optimization of ionomer content for anode catalyst layers was carried out. A commercial catalyst of 20 wt.% Pt/C was used instead of 50 wt.% Pt/C which is commonly used for PEMFCs. The ionomer content varies from 0.6 to 1.2 based on ionomer to carbon ratio (I/C) and the catalyst layer is formed over the electrolyte by the ultrasonic spray process. Evaluation of the prepared MEA in the unit cell showed that the optimal ionomer content of the air electrode was 0.8 on the I/C basis, while the hydrogen electrode was optimal at the relatively high ionomer content of 1.0. In addition, a large difference in cell performance was observed when the ionomer content of the hydrogen electrode was changed. Increasing the ionomer content from 0.6 to 1.0 by I/C in a hydrogen electrode with 0.05 mg/㎠ platinum loading resulted in more than double cell performance improvements on a 0.6 V. Through the analysis of various electrochemical properties in the single cell, it was assumed that the change in ionomer content of the hydrogen electrode affects the water flow between the hydrogen and air electrodes bounded by the membrane in the cell, which affects the overall performance of the cell. A more specific study will be carried out to understand the water flow mechanism in the future, and this study will show that the optimization process of hydrogen electrode can also be a very important cell design variable for the low-Pt and high-performance MEA.
Keywords
Polymer electrolyte membrane fuel cell; Anode catalyst layer; Ionomer content; MEA; Hydrogen oxidation reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. G. Pollet, "The Use of Power Ultrasound for the Production of PEMFC and PEMWE Catalysts and Low-Pt Loading and High-Performing Electrodes", Catalysts, Vol. 9, No. 3, 2019, pp. 246-263, doi: https://doi.org/10.3390/catal9030246.   DOI
2 B. Millington, V. Whipple and B. G. Pollet, "A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique" Journal of Power Sources, Vol. 196, No. 20, 2011, pp. 8500-8508, doi: https://doi.org/10.1016/j.jpowsour.2011.06.024.   DOI
3 T. H. Huang, H. L. Shen, T. C. Jao, F. B. Weng, and A. Su, "Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine", International Journal of Hydrogen Energy, Vol. 37, No. 18, 2012, pp. 13872-13879, doi: https://doi.org/10.1016/j.ijhydene.2012.04.108.   DOI
4 H. A. Gasteiger, J. E. Panels, and S. G. Yan, "Dependence of PEM fuel cell performance on catalyst loading", Journal of Power Sources, Vol. 127, No. 1-2, 2004, pp. 162-171, doi: https://doi.org/10.1016/j.jpowsour.2003.09.013.   DOI
5 H. N. Su, S. J. Liao, T. Shu, and H. L. Gao, "Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique", Journal of Power Sources, Vol. 195, No. 3, 2010, pp. 756-761, doi: https://doi.org/10.1016/j.jpowsour.2009.08.037.   DOI
6 K. C. Neyerlin, W. Gu, J. Jorne, and H. A. Gasteiger, "Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions", Journal of The Electrochemical Society, Vol. 154, No. 7, 2007, pp. B631-B635, doi: https://doi.org/10.1149/1.2733987.   DOI
7 N. Nonoyama, S. Okazaki, A. Z. Weber, Y. Ikogi, and T. Yoshida, "Analysis of Oxygen-Transport Diffusion Resistance in Proton-Exchange-Membrane Fuel Cells", Journal of The Electrochemical Society, Vol. 158, No. 4, 2011, pp. B416-B423, doi: https://doi.org/10.1149/1.3546038.   DOI
8 S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, "Effects of Nafion impregnation on performances of PEMFC electrodes", Electrochimica Acta, Vol. 43, No. 24, 1998, pp. 3693-3701, doi: https://doi.org/10.1016/S0013-4686(98)00127-3.   DOI
9 C. Y. Ahn, J. Y. Cheon, S. H. Joo, and J. Kim, "Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells", Journal of Power Sources, Vol. 222, 2013, pp. 477-482, doi: https://doi.org/10.1016/j.jpowsour.2012.09.012.   DOI
10 K. H. Kim, K. Y. Lee, S. Y. Lee, E. A. Cho, T. H. Lim, H. J. Kim, S. P. Yoon, S. H. Kim, T. W. Lim, and J. H. Jang, "The effects of relative humidity on the performances of PEMFC MEAs with various Nafion$^{(R)}$ ionomer contents", International Journal of Hydrogen Energy, Vol. 35, No. 23, 2010, pp. 13104-13110, doi: https://doi.org/10.1016/j.ijhydene.2010.04.082.   DOI
11 K. S. Lee, J. S. Lee, N. H. Kwon, and I. C. Hwang, "Development of High Performance MEA by Decal Method for PEM Fuel Cell", Vol. 22, No. 5, 2011, pp. 585-591.   DOI
12 C. Wang, X. Cheng, X. Yan, S. Shen, C. Ke, G. Wei, and J. Zhang, "Respective Influence of Ionomer Content on Local and Bulk Oxygen Transport Resistance in the Catalyst Layer of PEMFCs with Low Pt Loading", Journal of The Electrochemical Society, Vol. 166, No. 4, 2019, pp. F239-F245, doi: https://doi.org/10.1149/2.0401904jes.   DOI
13 K. Y. Ahn, C. N. Yang, and S. Lee, "A Study on Electrochemical Characteristics of MEA with Nafion Ionomer Content in Catalyst Layer for PEMFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, 2010, No. 6, pp. 540-546.
14 H. S. Jang, and E. A. Cho, "Effects of Additives and Hot-Pressing Conditions on the Surface and Performance of MEAs for PEMFCs", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 5, 2010, pp. 398-404.
15 S. M. Andersen, and L. Grahl-Madsen, "Interface contribution to the electrode performance of proton exchange membrane fuel cells - Impact of the ionomer", International Journal of Hydrogen Energy, Vol. 41, No. 3, 2016, pp. 1892-1901, doi: https://doi.org/10.1016/j.ijhydene.2015.11.101.   DOI
16 K. H. Kim, K. Y. Lee, H. J. Kim, E. A. Cho, S. Y. Lee, T. H. Lim, S. P. Yoon, I. C. Hwang, and J. H. Jang, "The effects of Nafion$^{(R)}$ ionomer content in PEMFC MEAs prepared by a catalystcoated membrane (CCM) spraying method", International Journal of Hydrogen Energy, Vol. 35, No. 5, 2010, pp. 2119-2126, doi: https://doi.org/10.1016/j.ijhydene.2009.11.058.   DOI
17 H. Yu, J. M. Roller, W. E. Mustain, and R. Maric, "Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology", Journal of Power Sources, Vol. 283, 2015, pp. 84-94, doi: https://doi.org/10.1016/j.jpowsour.2015.02.101.   DOI
18 Y. Liu, C. Ji, W. Gu, J. Jorne, and H. A. Gasteiger, "Effects of Catalyst Carbon Support on Proton Conduction and Cathode Performance in PEM Fuel Cells", Journal of American Chemical Society, Vol. 158, No. 6, 2011, pp. B614-B621, doi: https://doi.org/10.1149/1.3562945.
19 S. Holdcroft, "Fuel Cell Catalyst Layers: A Polymer Science Perspective", Journal of American Chemical Society, Vol. 26, 2014, pp. 381-393, doi: https://doi.org/10.1021/cm401445h.
20 Y. Liu, C. Ji, W. Gu, D. R. Baker, J. Jorne, and H. A. Gasteiger, "Proton Conduction in PEM Fuel Cell Cathodes: Effects of Electrode Thickness and Ionomer Equivalent Weight", Journal of The Electrochemical Society, Vol. 157, No. 3, 2010, pp. B1154-B1162, doi: https://doi.org/10.1149/1.3435323.   DOI
21 M. S. Lee, M. Uchida, H. Yano, D. A. Tryk, H. Uchida, and M. Watanabe, "New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions", Electrochimica Acta, Vol. 55, No. 28, 2010, pp. 8504-8512, doi: https://doi.org/10.1016/j.electacta.2010.07.071.   DOI
22 T. Suzuki, K. Kudo, and Y. Morimoto, "Model for investigation of oxygen transport limitationg in a polymer electrolyte fuel cell", Journal of Power Sources, Vol. 222, 2013, pp.379-389, doi: https://doi.org/10.1016/j.jpowsour.2012.08.068.   DOI
23 T. Y. Kim, J. H. Lee, T. H. Yang, Y. G. Yoon, S. H. Park, and S. D. Yim, "Novel catalyst layer synthesized by an in situ solgel process with tetraethoxysilane in a Nafion ionomer solution with Pt/C/ for PEFCs: the effects of self-assembled Nafion- $SiO_2$ on Pt ORR activity and an increased water content in the polymer membranes", RSC Advances, Vol. 2, 2012, pp. 6957-6969, doi: https://doi.org/10.1039/C2RA20796F.   DOI